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Abstract
Static analysis designers must carefully balance precision and ef-
ficiency. In our experience, many static analysis tools are built
around an elegant, core algorithm, but that algorithm is then exten-
sively tweaked to add just enough precision for the coding idioms
seen in practice, without sacrificing too much efficiency. There are
several downsides to adding precision in this way: the tool’s imple-
mentation becomes much more complicated; it can be hard for an
end-user to interpret the tool’s results; and as software systems vary
tremendously in their coding styles, it may require significant algo-
rithmic engineering to enhance a tool to perform well in a particular
software domain.

In this paper, we present MIX, a novel system that mixes type
checking and symbolic execution. The key aspect of our approach
is that these analyses are applied independently on disjoint parts of
the program, in an off-the-shelf manner. At the boundaries between
nested type checked and symbolically executed code regions, we
use special mix rules to communicate information between the off-
the-shelf systems. The resulting mixture is a provably sound analy-
sis that is more precise than type checking alone and more efficient
than exclusive symbolic execution. In addition, we also describe a
prototype implementation, MIXY, for C. MIXY checks for potential
null dereferences by mixing a null/non-null type qualifier inference
system with a symbolic executor.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.2.5 [Software Engineer-
ing]: Testing and Debugging—Symbolic execution; F.3.2 [Log-
ics and Meanings of Programs]: Semantics of Programming Lang-
uages—Program analysis

General Terms Languages, Verification

Keywords Mix, mixed off-the-shelf analysis, symbolic execution,
type checking, mix rules, false alarms, precision

1. Introduction
All static analysis designers necessarily make compromises be-
tween precision and efficiency. On the one hand, static analysis
must be precise enough to prove properties of realistic software
systems, and on the other hand, it must run in a reasonable amount
of time and space. One manifestation of this trade-off is that, in our
experience, many practical static analysis tools begin with a rel-
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atively straightforward algorithm at their core, but then gradually
accrete a multitude of special cases to add just enough precision
without sacrificing efficiency.

Some degree of fine tuning is inevitable—undecidability of
static analysis means that analyses must be targeted to programs
of interest—but an ad-hoc approach has a number of disadvan-
tages: it significantly complicates the implementation of a static
analysis algorithm; it is hard to be sure that all the special cases
are handled correctly; and it makes the tool less predictable and
understandable for an end-user since the exact analysis algorithm
becomes obscured by the special cases. Perhaps most significantly,
software systems are extremely diverse, and programming styles
vary greatly depending on the application domain and the idiosyn-
crasies of the programmer and her community’s coding standards.
Thus an analysis that is carefully tuned to work in one domain may
not be effective in another domain.

In this paper, we present MIX, a novel system that trades off pre-
cision and efficiency by mixing type checking—a coarse but highly
scalable analysis—with symbolic execution [King 1976], which is
very precise but inefficient. In MIX, precision versus efficiency is
adjusted using typed blocks {t e t} and symbolic blocks {s e s}
that indicate whether expression e should be analyzed with type
checking or symbolic execution, respectively. Blocks may nest ar-
bitrarily to achieve the desired level of precision versus efficiency.

The distinguishing feature of MIX is that its type checking and
symbolic execution engines are completely standard, off-the-shelf
implementations. Within a typed or symbolic block, the analyses
run as usual. It is only at the boundary between blocks that we use
special mix rules to translate information back-and-forth between
the two analyses. In this way, MIX gains precision at limited cost,
while potentially avoiding many of the pitfalls of more complicated
approaches.

As a hypothetical example, consider the following code:

1 {s
2 if (multithreaded){t fork(); t}
3 {t . . . t}
4 if (multithreaded){t lock(); t}
5 {t . . . t}
6 if (multithreaded){t unlock(); t}
7 s}

This code uses multiple threads only if multithreaded is set to
true. Suppose we have a type-based analysis that checks for data
races. Then assuming the analysis is path insensitive, it cannot tell
whether a thread is created on line 2, and it does not know the lock
state after lines 4 and 6—all of which will lead to false positives.

Rather than add path sensitivity to our core data race analysis,
we can instead use MIX to gain precision. We wrap the program
in a symbolic block at the top level so that the executions for each
setting of multithreaded will be explored independently. Then for
performance, we wrap all the other code (lines 3 and 5 and the calls
to fork, lock, and unlock) in typed blocks, so that they are analyzed
with the type-based analysis. In this case, these block annotations
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effectively cause the type-based analysis to be run twice, once for
each possible setting of multithreaded; and by separating those two
cases, we avoid conflation and eliminate false positives.

While MIX cannot address every precision/efficiency tradeoff
issue (for example, the lexical scoping of typed and symbolic
blocks is one limitation), there are nonetheless many potential ap-
plications. Among other uses, MIX can encode forms of flow sen-
sitivity, context sensitivity, path sensitivity, and local type refine-
ments. MIX can also use type checking to overcome some limi-
tations of symbolic execution (Section 2). Also, for the purposes
of this paper, we leave the placement of block annotations to the
programmer, but we envision that an automated refinement algo-
rithm could heuristically insert blocks as needed. In this scenario,
MIX becomes an intermediate language for modularly combining
off-the-shelf analyzer implementations.

In this paper, we formalize MIX for a small imperative lan-
guage, mixing a standard type checking system with symbolic ex-
ecution to yield a system to check for the absence of run-time type
errors. Thus, rather than checking for assertion failures, as a typical
symbolic executor might do, our formal symbolic executor reports
any type mismatches it detects. To mix these two systems together,
we introduce two new rules: one rule in the type system that “type
checks” blocks {s e s} using the symbolic executor; and one rule
in the symbolic executor that “executes” blocks {t e t} using the
type checker. We prove that the type system, symbolic executor,
and mix of the two systems are sound. The soundness proof of MIX
uses the proofs of type soundness and symbolic execution sound-
ness essentially as-is, which provides some additional evidence of a
clean modularization. Additionally, two features of our formalism
for symbolic execution may be of independent interest: we discuss
the tradeoff between “forking” the symbolic executor and giving
more work to the solver; and we provide a soundness proof, which,
surprisingly, we have been unable to find for previous symbolic ex-
ecution systems (Section 3).

Finally, we describe MIXY, a prototype implementation of MIX
for C. MIXY combines a simple, monomorphic type qualifier in-
ference system (a reimplementation of Foster et al. [2006]) with a
C symbolic executor. There are two key challenges that arise when
mixing type inference rather than checking: we need to perform
a fixed-point computation as we switch between typed and sym-
bolic blocks since data values can pass from one to the other and
back; and we need to integrate aliasing information into our analy-
sis so that pointer manipulations performed within symbolic blocks
correctly influence typed blocks. Additionally, we extend MIXY to
support caching block results as well as recursion between blocks.
We use MIXY to look for null pointer errors in a reasonably-sized
benchmark vsftpd; we found several examples where adding sym-
bolic blocks can eliminate false positives compared to pure type
qualifier inference (Section 4).

We believe that MIX provides a promising new approach to
trading off precision and efficiency in static analysis. We expect
that the ideas behind MIX can be applied to many different combi-
nations of many different analyses.

2. Motivating Examples
Before describing MIX formally, we examine some coding idioms
for which type inference and symbolic execution can profitably be
mixed. Our examples will be written in either an ML-like language
or C-like language, depending on which one is more natural for the
particular example.

Path, Flow, and Context Sensitivity. In the introduction, we
saw one example in which symbolic execution introduced a small
amount of path sensitivity to type inference. There are several po-
tential variations on this example where we can locally add a little

bit of path sensitivity to increase the precision of type checking.
For example, we can avoid analyzing unreachable code:

{t . . . {s if true then{t 5 t}else{t ”foo” + 3 t}s} . . . t}

This code runs without errors, but pure type checking would com-
plain about the potential type error in the false branch. However,
with these block annotations added in MIX, the symbolic executor
will only invoke the type checker for the true branch and hence will
avoid a false positive.

We can also use symbolic execution to gain some flow sensi-
tivity. For example, in a dynamically-typed imperative language,
programmers may reuse variables as different types, such as in the
following:

{t . . . {s var x = 1;{t . . . t} ; x = ”foo”; s} . . . t}

Here the local variable x is first assigned an integer and is later
reused to refer to a string. With the annotations above, we can
successfully statically check such code using the symbolic executor
to distinguish the two different assignments to x, then type check
the code in between.

Similar cases can occur if we try to apply a non-standard type
system to existing code. For example, in our case study (Sec-
tion 4.5), we applied a nullness checker based on type qualifiers
to C. We found some examples like the following code:

{t . . . {s x→obj = NULL;
x→obj = ( . . . )malloc( . . . ); s} . . . t}

Here x→obj is initially assigned to NULL, immediately before be-
ing assigned a freshly allocated location. A flow insensitive type
qualifier system would think that x→obj could be NULL after this
pair of assignments, even though it cannot be.

Finally, we can also use symbolic execution to gain context
sensitivity, though at the cost of duplicate work. For example, in
the following:

{s let id x = x in{t . . .{s id 3 s} . . . {s id 3.0 s} . . . t} s}

the identity function id is called with an int and a float. Rather than
adding parametric polymorphism to type check this example, we
could wrap those calls in symbolic blocks, which in MIX causes
the calls to be checked with symbolic execution. While this is
likely not useful for standard type checking, for which parametric
polymorphism is well-understood, it could be very useful for a
more advanced type system for which fully general parametric
polymorphic type inference might be difficult to implement or
perhaps even undecidable.

A combination of context sensitivity and path sensitivity is
possible with MIX. For example, consider the following:

{s
let div x y = if y = 0 then ‘‘err’’ else x / y in
{t . . .+{s div 7 4 s} t}

s}

where the div function may return an int or a string, but it returns a
string (indicating error) only when the second argument is 0. Note
that this level of precision would be out of the reach of parametric
polymorphism by itself.

Local Refinements of Data. Symbolic execution can also poten-
tially be used to model data more precisely for non-standard type
systems. As one example, suppose we introduce a type qualifier
system that distinguishes the sign of an integer as either positive,
negative, zero, or unknown. Then we can use symbolic execution
to refine the type of an integer after a test:

{t
let x : unknown int = . . . in
{s
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if x > 0 then{t (∗ x : pos int ∗) . . . t}
else if x = 0 then{t (∗ x : zero int ∗) . . . t}
else{t (∗ x : neg int ∗) . . . t}

s}
t}

Here on entry to the symbolic block, x is an unknown integer, so
the symbolic executor will assign it an initial symbolic value αx

ranging over all possible integers. Then at the conditional branches,
the symbolic executor will fork and explore the three possibilities:
αx > 0, αx = 0, and αx < 0. On entering the typed block in
each branch, since the value of x is constrained in the symbolic
execution, the type system will start with the appropriate type for x,
either pos, zero, or neg int, respectively.

As another example, suppose we have a type system to prevent
data races in C. Then a common problem that arises is analyzing
local initialization of shared data [Pratikakis et al. 2006]. Consider
the following code:

{t
{s

x = (struct foo ∗) malloc(sizeof(struct foo));
x→bar = . . . ;
x→baz = . . . ;
x→qux = . . . ;

s}
insert(shared data structure, x);

t}

Here we allocate a new block of memory and then initialize it in
several steps before it becomes shared. A flow-insensitive type-
based analysis would report an error because the writes through
x occur without a lock held. On the other hand, if we wrap the
allocation and initialization in a symbolic block, as above, symbolic
execution can easily observe that x is local during the initialization
phase, and hence the writes need not be protected by a lock.

Helping Symbolic Execution. The previous examples considered
adding precision in type checking through symbolic execution.
Alternatively, typed blocks can potentially be used to introduce
conservative abstraction in symbolic execution when the latter is
not viable. For example:

{s
let x ={t unknown function() t} in . . .
let y ={t 2∗∗z (∗ operation not supported by solver ∗) t} in . . .
{t while true do{s loop body s}t}

s}

The first line contains a call to a function whose source code is not
available, so we cannot symbolically execute the call. However, if
we know the called function’s type, then we can wrap the call in
a typed block (assuming the function has no side effects), conser-
vatively modeling its return value as any possible member of its
return type. Similarly, on the second line, we are performing an
exponentiation operation, and let us suppose the symbolic execu-
tor’s solver cannot model this operation if z is symbolic. Then by
wrapping the operation in a typed block, we can continue symbolic
execution, again conservatively assuming the result of the exponen-
tiation is any member of the result type. The third line shows how
we could potentially handle long-running loops by wrapping them
in typed blocks, so that symbolic execution would effectively skip
over them rather than unroll them (infinitely). We can also recover
some precision within the loop body by further wrapping the loop
body with a symbolic block.

3. The MIX System
In the previous section, we considered a number of idioms that mo-
tivate the design of MIX. Here, we consider a core language, shown

Source Language.
e ::= x | v variables, constants
| e+ e arithmetic
| e = e | ¬e | e ∧ e predicates
| if e then e else e conditional
| let x = e in e let-binding
| ref e | !e | e := e references
| {t e t} type checking block
| {s e s} symbolic execution block

v ::= n | true | false concrete values

Types, Symbolic Expressions, and Environments.

τ ::= int | bool | τ ref types
Γ ::= ∅ | Γ, x : τ typing environment

s ::= u:τ typed symbolic expressions
g ::= u:bool guards
u ::= α | v symbolic variables, constants
| u:int + u:int arithmetic
| s = s | ¬g | g ∧ g predicates
| m[u:τ ref] memory select

m ::= µ arbitrary memory
| m, (s � s) memory update
| m, (s

a� s) memory allocation
Σ ::= ∅ | Σ, x : s symbolic environment

Figure 1. Program expressions, types, and symbolic expressions.

in the top portion of Figure 1, with which we study the essence of
switching blocks for mixing analyses. Our language includes vari-
ables x; integers n; booleans true and false; selected arithmetic and
boolean operations +, =, ¬, and ∧; conditionals with if; let bind-
ings; and ML-style updatable references with ref (construction), !
(dereference), and := (assignment). We also include two new block
forms, typed blocks {t e t} and symbolic blocks {s e s}, which
indicate e should be analyzed with type checking or symbolic ex-
ecution, respectively. We leave unspecified whether the outermost
scope of a program is treated as a typed block or a symbolic block;
MIX can handle either case.

3.1 Type Checking and Symbolic Execution
Type checking for our source language is entirely standard, and
so we omit those rules here. Our type checking system proves
judgments of the form Γ ` e : τ , where Γ is the type environment
and τ is e’s type. Grammars for Γ and τ are given in the bottom
portion of Figure 1.

The remainder of this section describes a generic symbolic ex-
ecutor. While the concept of symbolic execution is widely known,
there does not appear to be a clear consensus of its definition. Thus,
we make explicit our definition of symbolic execution here through
a formalization similar to an operational semantics. Such a formal-
ization enables us to describe the switching between type checking
and symbolic execution in a uniform manner.

Symbolic Expressions, Memories, and Environments. The re-
mainder of Figure 1 describes the symbolic expressions and en-
vironments used by our symbolic executor. Symbolic expressions
are used to accumulate constraints in deferral rules. For example,
the symbolic expression (α:int + 3:int):int represents a value that
is three more than the unknown integer α.

Because we are concerned with checking for run-time type er-
rors, in our system symbolic expressions s have the form u:τ ,
where u is a bare symbolic expression and τ is its type. With these
type annotations, we can immediately determine the type of a sym-
bolic expression, just like in a concrete evaluator with values. As a
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shorthand, we use g to represent conditional guards, which are just
symbolic expressions with type bool. Bare symbolic expressions u
may be symbolic variables α (e.g., α:int is a symbolic integer, and
α:bool is a symbolic boolean); known values v; or operations +,
=, ¬, ∧ applied to symbolic expressions of the appropriate type.
Notice that our syntax forbids the formation of certain ill-typed
symbolic expression (e.g., α1:int + α2:bool is not allowed).

Symbolic expressions also include symbolic memory accesses
m[u:τ ref], which represents an access through pointer u in sym-
bolic memory m. A symbolic memory may be µ, representing an
arbitrary but well-typed memory; m, (s � s′), a memory that
is the same as m except location s is updated to contain s′; or
m, (s

a� s′), which is the same as m except newly allocated lo-
cation s points to s′. These are essentially McCarthy-style sel and
upd expressions that allow the symbolic executor to accumulate
a log of writes and allocations while deferring alias analysis. An
allocation always creates a new location that is distinct from the lo-
cations in the base unknown memory, so we distinguish them from
arbitrary writes.

Finally, symbolic environments Σ map local variables x to
(typed) symbolic expressions s.

Symbolic Execution for Pure Expressions. Figure 2 describes
our symbolic executor on pure expressions using what are essen-
tially big-step operational semantics rules. The rules in Figure 2
prove judgments of the form

Σ ` 〈S ; e〉 ⇓ 〈S′ ; s〉
meaning with local variables bound in Σ, starting in state S, expres-
sion e evaluates to symbolic expression s and updates the state to
S′. In our symbolic execution judgment, a state S is a tuple 〈g ;m〉,
where g is a path condition constraining the current state and m is
the current symbolic memory. The path condition begins as true,
and whenever the symbolic executor makes a choice at a condi-
tional, we extend the path condition to remember that choice (more
on this below). We write X(S) for the X component of S, with
X ∈ {g,m}, and similarly we write S[X 7→ Y ] for the state that
is the same as S, except its X component is now Y .

Most of the rules in Figure 2 are straightforward and intend to
summarize typical symbolic executors. Rule SEVAR evaluates a
local variable by looking it up in the current environment. Notice
that, as with standard operational semantics, there is no reduction
possible if the variable is not in the current environment. Rule
SEVAL reduces values to themselves, using the auxiliary function
typeof(v) that examines the value form to return its type (i.e.,
typeof(n) = int and typeof(true) = typeof(false) = bool).

Rules SEPLUS, SEEQ, SENOT, and SEAND execute the
subexpressions and then form a new symbolic expression with +,
=, ¬, or ∧, respectively. Notice that these rules place requirements
on the subexpressions—for example, SEPLUS requires that the
subexpressions reduce to symbolic integers, and SENOT requires
that the subexpression reduces to a guard (a symbolic boolean). If
the subexpression does not reduce to an expression of the right type,
then symbolic execution fails. Thus, these rules form a symbolic
execution engine that does very precise dynamic type checking.

Rule SELET symbolically executes e1 and then binds e1 to x for
execution of e2. The last two rules, SEIF-TRUE and SEIF-FALSE,
model a pure, non-deterministic version of the kind of symbolic ex-
ecution popularized by DART [Godefroid et al. 2005], CUTE [Sen
et al. 2005], EXE [Cadar et al. 2006], and KLEE [Cadar et al.
2008]. When we reach a conditional, we conceptually fork exe-
cution, extending the path condition with g1 or ¬g1 to indicate the
branch taken. EXE and KLEE would both invoke an SMT solver at
this point to decide whether one or both branches are feasible, and
then try all feasible paths. DART and CUTE, in contrast, would
continue down one path as guided by an underlying concrete run

Symbolic Execution. Σ ` 〈S ; e〉 ⇓ 〈S′ ; s〉 S = 〈g ;m〉

SEVAR

Σ, x : s ` 〈S ; x〉 ⇓ 〈S ; s〉

SEVAL

Σ ` 〈S ; v〉 ⇓ 〈S ; (v: typeof(v))〉

SEPLUS
Σ ` 〈S ; e1〉 ⇓ 〈S1 ; u1:int〉 Σ ` 〈S1 ; e2〉 ⇓ 〈S2 ; u2:int〉

Σ ` 〈S ; e1 + e2〉 ⇓ 〈S2 ; (u1:int + u2:int):int〉

SEEQ

Σ ` 〈S ; e1〉 ⇓ 〈S1 ; u1:τ〉 Σ ` 〈S1 ; e2〉 ⇓ 〈S2 ; u2:τ〉
Σ ` 〈S ; e1 = e2〉 ⇓ 〈S2 ; (u1:τ = u2:τ):bool〉

SENOT
Σ ` 〈S ; e1〉 ⇓ 〈S1 ; g1〉

Σ ` 〈S ; ¬e1〉 ⇓ 〈S1 ; ¬g1:bool〉

SEAND
Σ ` 〈S ; e1〉 ⇓ 〈S1 ; g1〉 Σ ` 〈S1 ; e2〉 ⇓ 〈S2 ; g2〉

Σ ` 〈S ; e1 ∧ e2〉 ⇓ 〈S2 ; (g1 ∧ g2):bool〉

SELET
Σ ` 〈S ; e1〉 ⇓ 〈S1 ; s1〉 Σ, x : s1 ` 〈S1 ; e2〉 ⇓ 〈S2 ; s2〉

Σ ` 〈S ; let x = e1 in e2〉 ⇓ 〈S2 ; s2〉

SEIF-TRUE
Σ ` 〈S ; e1〉 ⇓ 〈S1 ; g1〉

Σ ` 〈S1[g 7→ g(S1) ∧ g1] ; e2〉 ⇓ 〈S2 ; s2〉
Σ ` 〈S ; if e1 then e2 else e3〉 ⇓ 〈S2 ; s2〉

SEIF-FALSE
Σ ` 〈S ; e1〉 ⇓ 〈S1 ; g1〉

Σ ` 〈S[g 7→ g(S1) ∧ ¬g1] ; e3〉 ⇓ 〈S3 ; s3〉
Σ ` 〈S ; if e1 then e2 else e3〉 ⇓ 〈S3 ; s3〉

Figure 2. Symbolic execution for pure expressions.

(so-called “concolic execution”), but then would ask an SMT solver
later whether the path not taken was feasible and, if so, come back
and take it eventually. All of these implementation choices can be
viewed as optimizations to prune infeasible paths or hints to focus
the exploration. Since we are not concerned with performance in
our formalism, we simply extend the path condition and continue—
eventually, when symbolic execution completes, we will check the
path condition and discard the path if it is infeasible. To get sound
symbolic execution, we will compute a set of symbolic executions
and require that all feasible paths are explored (see Section 3.2).

Sometimes, the symbolic executor may want to throw away
information (e.g., replace a symbolic expression for a compli-
cated memory read with a fresh symbolic variable). Such a rule
is straightforward to add, but as discussed in Section 3.2, a nested
typed block {t e t} serves a similar purpose.

Deferral Versus Execution. Consider again the rules for sym-
bolic execution on pure expressions in Figure 2. Excluding the triv-
ial SEVAL rule, the first set of rules (SEPLUS, SEEQ, SENOT,
and SEAND) versus the second set (SELET, SEVAR, SEIF-TRUE,
SEIF-FALSE) seem qualitatively different. The first set simply get
symbolic expressions for their subexpressions and form a new sym-

4



bolic expression of the corresponding operator, essentially defer-
ring any reasoning about the operation (e.g., to an SMT solver).
In contrast, the second set does not accumulate any such symbolic
expression but rather chooses a possible concrete execution to fol-
low. For example, we can view SEIF-TRUE as choosing to assume
that g1 is concretely true and proceeding to symbolically execute
e2. This assumption is recorded in the path condition. (The SELET
and SEVAR rules are degenerate execution rules where no assump-
tions need to be made because there is only one possible concrete
execution for each.) Alternatively, we see that there are symbolic
expression forms for +, =, ¬, and ∧ but not for let, program vari-
ables, and if.

Although it is not commonly presented as such, the decision
of deferral versus execution is a design choice. For example, let
us include an if-then-else symbolic expression g?s1:s2 (using a C-
style conditional syntax) that evaluates to s1 if g evaluates to true
and s2 otherwise. Then, we could defer to the evaluation of the
conditional to the solver with the following rule:
SEIF-DEFER

Σ ` 〈S ; e1〉 ⇓ 〈S1 ; g1〉
Σ ` 〈S[g 7→ g(S1) ∧ g1] ; e2〉 ⇓ 〈S2 ; u2:τ〉

Σ ` 〈S[g 7→ g(S1) ∧ ¬g1] ; e3〉 ⇓ 〈S3 ; u3:τ〉
S′ = 〈(g1?g(S2):g(S3)) ; (g1?m(S2):m(S3))〉

Σ ` 〈S ; (if e1 then e2 else e3)〉 ⇓ 〈S′ ; (g1?(u2:τ):(u3:τ)):τ〉
Here notice we also have to extend the ·? · :· relation to operate
over memory as well. With this rule, we need not “fork” symbolic
execution at all. However, note that even with conditional symbolic
expressions and condition symbolic memory, this rule is more con-
servative than the SEIF-TRUE and SEIF-FALSE execution rules, as
it requires both branches to have the same type.

Conversely, other rules may also be made non-deterministic in
manner similar to SEIF-*. For example, SEVAR may instead return
an arbitrary value v and add Σ(x) = v to the path condition, a style
that resembles hybrid concolic testing [Majumdar and Sen 2007].
A special case of execution rules are ones that apply only when
we have concrete values during symbolic execution and thus do not
need to “fork.” For example, we could have a SEPLUS-CONC that
applies to two concrete values n1, n2 and returns the sum. This
approach is reminiscent of partial evaluation.

These choices trade off the amount of work done between the
symbolic executor and the underlying SMT solver. For example,
SEIF-DEFER introduces many disjunctions into symbolic expres-
sions, which then may be hard to solve efficiently. To match current
practice, we stick with the forking variant for conditionals, but we
believe our system would also be sound with SEIF-DEFER.

Symbolic References. Figure 3 continues our symbolic executor
definition with rules for updatable references. We use deferral rules
for all aspects of references in our formalization. Rule SEREF eval-
uates e1 and extends m(S1) with an allocation for fresh symbolic
pointer α. Similarly, rule SEASSIGN extends S2 to record that s1

now points to s2. Observe that allocations and writes are simply
logged during symbolic execution for later inspection. Also, no-
tice that we allow any value to be written to s1, even if it does not
match the type annotation on s1. In contrast, standard type systems
require that any writes to memory must preserve types since the
type system does not track enough information about pointers to be
sound if that property is violated. Symbolic execution tracks every
possible program execution precisely, and so it can allow arbitrary
memory writes.

In SEDEREF, we evaluate e1 to a pointer u1:τ ref and then
produce the symbolic expression m(S1)[u1:τ ref]:τ to represent
the contents of that location. However, here we are faced with a
challenge: we are not actually looking up the contents of memory;
rather, we are simply forming a symbolic expression to represent

Symbolic Execution for References. Σ ` 〈S ; e〉 ⇓ 〈S′ ; s〉

SEREF
Σ ` 〈S ; e1〉 ⇓ 〈S1 ; u1:τ〉 α /∈ Σ, S, S1, u1

S′ = S1[m 7→ (m(S1), (α:τ ref
a� u1:τ))]

Σ ` 〈S1 ; ref e1〉 ⇓ 〈S′ ; α:τ ref〉

SEASSIGN
Σ ` 〈S ; e1〉 ⇓ 〈S1 ; s1〉 Σ ` 〈S1 ; e2〉 ⇓ 〈S2 ; s2〉

Σ ` 〈S ; e1 := e2〉 ⇓ 〈S2[m 7→ (m(S2), (s1 � s2))] ; s2〉

SEDEREF
Σ ` 〈S ; e1〉 ⇓ 〈S1 ; u1:τ ref〉 ` m(S1) ok

Σ ` 〈S ; !e1〉 ⇓ 〈S1 ;m(S1)[u1:τ ref]:τ〉

Memory Type Consistency. ` m ok U ` m ok

EMPTY-OK

` µ ok ∅

ALLOC-OK
` m ok U

` m, (α:τ ref
a� u2:τ) ok U

OVERWRITE-OK
` m ok U U ′ = U\ {s1 � s2 | s1 ≡ u1:τ ref ∧ s1 � s2 ∈ U}

` m, (u1:τ ref � u2:τ) ok U ′

ARBITRARY-NOTOK
` m ok U

` m, (s1 � s2) ok (U ∪ {s1 � s2})

M-OK
` m ok ∅
` m ok

Figure 3. Symbolic execution for updatable references.

the contents. How, then, do we determine the type of the pointed-
to value? We need the type so that we can halt symbolic execution
later if that value is used in a type-incorrect manner. That is, we do
not want to defer the discovery of a potential type error.

Our solution is to use the type annotation on the pointer to
get the type of the contents—but above we just explained that
SEASSIGN allows writes to violate those type annotations. There
are many potential ways to solve this problem. We could invoke
an SMT solver to compute the actual set of addresses that could
be dereferenced and fork execution for each one. Or we could
proceed as our implementation and use an external alias analysis
to conservatively model all possible locations that could be read to
check that the values at all locations have the same type (Section 4).
However, to keep the formal system simple, we choose a very
coarse solution: we require that all pointers in memory are well-
typed with the check ` m(S1) ok.

This judgment is defined in the bottom portion of Figure 3 in
terms of the auxiliary judgment ` m ok U , which means mem-
ory m is consistently typed (pointers point to values of the right
type), except for mappings in U . There are four cases for this judg-
ment. EMPTY-OK says that arbitrary well-typed memory µ is con-
sistently typed. Similarly, ALLOC-OK says that ifm is consistently
typed except for potentially inconsistent writes inU , then adding an
allocation preserves consistent typing up to U . Rule OVERWRITE-
OK says that if ` m ok U and we extend m with a well-typed
write to u1, then any previous, inconsistent writes to locations
s1 ≡ u1:τ ref can be ignored. Here by≡ we mean syntactic equiv-
alence, but in practice we could query a solver to validate such
an equality given the current path condition. Rule ARBITRARY-
NOTOK says that any write can be added to U and viewed as po-
tentially inconsistent. Finally, M-OK says that ` m ok ifm has no
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Block Typing. Γ ` e : τ

TSYMBLOCK
Σ(x) = αx:Γ(x) (for all x ∈ dom(Γ))

Σ ` 〈S ; e〉 ⇓ 〈Si ; ui:τ〉 S = 〈true ; µ〉 µ /∈ Σ
` m(Si) ok exhaustive(g(S1), . . . , g(Sn)) (i ∈ 1..n)

Γ ` {s e s} : τ

exhaustive(g1, . . . , gn)⇐⇒ (g1 ∨ . . . ∨ gn is a tautology)

Block Symbolic Execution. Σ ` 〈S ; e〉 ⇓ 〈S′ ; s〉

SETYPBLOCK
` Σ : Γ ` m(S) ok Γ ` e : τ µ′, α /∈ Σ, S

Σ ` 〈S ; {t e t}〉 ⇓ 〈S[m 7→ µ′] ; α:τ〉

Symbolic and Typing Environment Conformance. ` Σ : Γ

dom(Σ) = dom(Γ)
Σ(x) = u:Γ(x) (for all x ∈ dom(Γ))

` Σ : Γ

Figure 4. Mixing symbolic execution and type checking.

inconsistent writes that persist. Together, these rules ensure that the
type assigned to the result of a dereference is sound. We can also
see how the SEDEREF may be made more precise by only requir-
ing consistency up to a set of writes U and querying a solver to
show that u1:τ ref are disequal to all the address expressions in U .

3.2 Mixing
In the previous section, we considered type checking and symbolic
execution separately, ignoring the blocks that indicate a switch in
analysis. Figure 4 shows the two mix rules that capture switching
between analyses.

Rule TSYMBLOCK describes how to type check a symbolic
block {s e s}, that is, how to apply symbolic execution to de-
rive a type of a subexpression for a type checker. First, we con-
struct an environment Σ that maps each variable x in Γ to a fresh
symbolic variable αx, whose type is extracted from Γ. Then we
run the symbolic execution under Σ, starting in a state with true
for the path condition and a fresh symbolic variable µ to stand
for the current memory. Recall that, because of SEIF-TRUE and
SEIF-FALSE, symbolic execution is actually non-deterministic—
it conceptually can branch at conditionals. If we want to soundly
model the entire possible behavior of e, we need to execute all
paths. Thus, we run the symbolic executor n times, yielding final
states 〈Si ; ui:τ〉 for i ∈ 1..n, and we require that the disjunction
of the guards from all executions form a tautology. This constraint
ensures that we exhaustively explore every possible path (see Sec-
tion 3.3 about soundness). And if all those paths executed success-
fully without type errors and returned a value of the same type τ ,
then that is the type of expression e. We also check that all paths
leave memory in a consistent state.

Symbolic execution has typically been used as an unsound anal-
ysis where there is no exhaustiveness check like exhaustive(. . .)
in the TSYMBLOCK. We can also model such unsound analysis by
weakening exhaustive(. . .) to a “good enough check.”

The other rule, SETYPBLOCK, describes how to symbolically
execute a typed block {t e t}, that is, how to apply the type checker
in the middle of a symbolic execution. We begin by deriving a type
environment Γ that maps local variables to the types of the symbols
they are mapped to in Σ. This mapping is described precisely by the
judgment ` Σ : Γ, which is straightforward. We also require that

the current symbolic memory state be consistent, since the typed
block relies purely on type information (rather than tracking pointer
values as symbolic execution does). Then we type check e in Γ,
yielding a type τ . The typed block itself symbolically evaluates to
a fresh symbolic variable α of type τ . Since the typed block may
have written to memory, we conservatively set the memory of the
output state to a fresh µ′, indicating we know nothing about the
memory state at that point except that it is consistent.

Note that in our formalism, we do not have typed blocks within
typed blocks, or symbolic blocks within symbolic blocks, though
these would be trivial to add (by passing-through).

Why Mix? The mix rules are essentially as precise as possible
given the strengths and limitations of each analysis. The nested
analysis starts with the maximum amount of information that can
be extracted from the other static analysis—for symbolic blocks,
the only available information for symbolic execution is types,
whereas for typed blocks, the type checker only cares about types of
variables and thus abstracts away the symbolic expressions. After
the nested analysis is complete, the result is similarly passed back
to the enclosing analysis as precisely as possible.

For this paper, we deliberately chose two analyses at opposite
ends of the precision spectrum: type checking is cheap, flow insen-
sitive with a rather coarse abstraction, while symbolic execution is
expensive, flow and path sensitive (and context sensitive if we add
functions) with a minimal amount of abstraction (i.e., it is not even
a proper program analysis per se, as there are no termination guar-
antees). They also work in such a different manner that it does not
seem particularly natural to combine them in tighter ways (e.g., as a
reduced product of abstract interpreters [Cousot and Cousot 1979]).
We think it is surprising just how much additional precision we can
obtain and the kinds of idioms we can analyze from such a simple
mixing of an entirely standard type system and a typical symbolic
executor as-is (as we see in Section 2). We note that a type system
capturing all of the examples in Section 2 would likely be quite
advanced (involving, for example, dependent types).

However, as can be seen in Figure 4, the conversion between
these two analyses may be extremely lossy. For example, in
SETYPBLOCK, the memory after returning from the type checker
must be a fresh arbitrary memory µ′ because emay make any num-
ber of writes not captured by the type system and thus not seen by
the symbolic executor. We can also imagine mixing any number of
analyses in arbitrary combination, yielding different precision/effi-
ciency tradeoffs. For example, if we were to use a type and effect
system rather than just a type system, we could avoid introducing a
completely fresh memory µ′ in SETYPBLOCK—instead, we could
find the effect of e and limit applying this “havoc” operation only
to locations that could have been changed.

3.3 Soundness
In this section, we sketch the soundness of MIX, which is described
in full detail in Appendix A. The key feature of our proof is
that aside from the mix rule cases, it reuses the standalone type
soundness and symbolic execution soundness proofs essentially as-
is.

We show soundness with respect to a standard big-step opera-
tional semantics for our simple language of expressions. Our se-
mantics is given by a judgment E ` 〈M ; e〉 → r. This says that
in a concrete environmentE, an initial concrete memoryM and an
expression e evaluate to a result r. A concrete environment maps
variables to values, while a concrete memory maps locations to val-
ues. The evaluation result r is either a concrete memory-value pair
〈M ′; v〉 or a distinguished error token.

To prove mix soundness, we consider simultaneously type and
symbolic execution soundness. While type soundness is standard,
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we discuss it briefly, as it is a part of mix soundness, and provides
intuition for symbolic execution soundness.

For type soundness, we introduce a memory type environment
Λ that maps locations to types, and we update the typing judgment
to carry this additional environment, as Γ `Λ e : τ where Λ is
constant in all rules. In many proofs, Λ is included in Γ rather
than being called out separately, but for mix soundness separat-
ing locations from variables makes the proof easier. To show type
soundness, we need a relation between the concrete environment
and memory 〈E;M〉 and the type environment and memory typing
〈Γ; Λ〉. We write this relation as 〈E;M〉 ∼ 〈Γ; Λ〉, which infor-
mally says two things: (1) the type environment Γ abstracts the
concrete environment E, that is, the concrete value v mapped by
each variable x in E has type Γ(x), and (2) the memory typing Λ
abstracts the concrete memory M , that is, the concrete value v at
each location l in M has type Λ(l). We also talk about the second
component in isolation, in which case we write M ∼ Λ to mean
memory typing Λ abstracts the concrete memory M .

Type soundness is the first part of mix soundness (statement 1 in
Theorem 1, shown below). Let us consider the pieces. Suppose we
have a concrete evaluation E ` 〈M ; e〉 → r. We further suppose
that e has type τ in typing environments that are sound with respect
to the concrete state (i.e., 〈E;M〉 ∼ 〈Γ; Λ〉). Then, the result r
must be a memory-value pair 〈M ′; v〉 where the resulting concrete
memory is abstracted by Λ′, an extension of Λ, and the resulting
value v has the same type τ in Γ with the extended memory typing
Λ′. Notice this captures the notions that well-typed expressions
cannot evaluate to error and that evaluation preserves typing.

For symbolic execution soundness, we need to ensure that a
symbolic execution faithfully models actual concrete executions.
Let V be a valuation, which is a finite mapping from symbolic
values α to concrete values v or concrete memories M . We write
JsKV , JmKV , and JΣKV for the natural extension of V to operate
on arbitrary symbolic expressions, memories, and the symbolic en-
vironment. Symbolic execution begins with symbolic values α for
unknown inputs and accumulates a symbolic expression s that rep-
resents the result of the program. Then at a high-level, if symbolic
execution is sound, then a concrete run that begins with JαKV for
inputs should produce the expression JsKV .

To formalize this notion, we need a soundness relation between
the concrete evaluation state and the symbolic execution state, just
as in type soundness. The form of our soundness relations for
symbolic execution states is as follows:

〈E;M〉 ∼Λ0·V ·Λ 〈Σ;m〉

This relation captures two key properties. First, applying the valu-
ation V to the symbolic state should yield the concrete state (i.e.,
JΣKV = E and JmKV = M ). Second, the types of symbolic ex-
pressions in Σ andmmust be correctly related. Recall that an addi-
tional property of our typed symbolic execution is that it tracks the
type of symbolic expressions and halts upon encountering ill-typed
expressions. The typing of symbolic reference expressions must be
with respect to some memory typing. This memory typing is given
by Λ0 and Λ. For technical reasons, we need to separate the loca-
tions in the arbitrary memory on entry Λ0 from the locations that
come from allocations during symbolic execution Λ; to get typing
for the entire memory, we write Λ0 ∗ Λ to mean the union of sub-
memory typings Λ0 and Λ with disjoint domains. Analogously, we
also have a symbolic soundness relation that applies to memory-
value pairs: 〈M ; v〉 ∼Λ0·V ·Λ 〈m; s〉.

As alluded to above, we first consider a notion of symbolic ex-
ecution soundness with respect to a concrete execution. This no-
tion is what is stated in the second part of mix soundness (Theo-
rem 1). Analogous to type soundness, it says that suppose we have
a concrete evaluation E ` 〈M ; e〉 → r and a symbolic execution

Σ ` 〈S;e〉 ⇓ 〈S′;s〉 such that the symbolic state is an abstraction of
the concrete state (i.e., 〈E;M〉 ∼Λ0·V ·Λ 〈Σ;m(S)〉). There is one
more premise, Jg(S′)KV , which says that the path condition accu-
mulated during symbolic execution holds under this valuation. This
constrains the concrete and symbolic executions to follow the same
path. With these premises, symbolic execution soundness says that
the result of symbolic execution, that is the memory-symbolic ex-
pression pair 〈m(S′); s〉, is an abstraction of the concrete evalua-
tion result, which must be a memory-value pair 〈M ′; v〉.
Theorem 1 (MIX Soundness)
1. If

E ` 〈M ; e〉 → r and

Γ `Λ e : τ such that

〈E;M〉 ∼ 〈Γ; Λ〉 ,

then ∅ `Λ′ v : τ and M ′ ∼ Λ′ for some M ′, v, Λ′ such that
r = 〈M ′; v〉 and Λ′ ⊇ Λ.

2. If

E ` 〈M ; e〉 → r and

Σ ` 〈S ; e〉 ⇓ 〈S′ ; s〉 such that

〈E;M〉 ∼Λ0·V ·Λ 〈Σ;m(S)〉 and Jg(S′)KV ,

then r ∼Λ′
0·V ′·Λ′ 〈m(S′); s〉 for some V ′ ⊇ V and some

Λ′0,Λ
′ such that Λ′0 ∗ Λ′ ⊇ Λ0 ∗ Λ.

PROOF
By simultaneous induction on the derivations of E ` 〈M ; e〉 → r.
The proof is given in Appendix A.

This statement of symbolic execution soundness (part 2 in The-
orem 1) is what we need to show MIX sound, but at first glance,
it seems suspect because it does not say anything about symbolic
execution being exhaustive. However, if we look at type checking a
symbolic block (i.e., rule TSYMBLOCK), exhaustiveness is ensured
through the exhaustive(. . .) constraint.

In particular, we can state exhaustive symbolic execution as
a corollary, and the case for TSYMBLOCK proceeds in the same
manner as this corollary.

Corollary 1.1 (Exhaustive Symbolic Execution)
Suppose E ` 〈M ; e〉 → 〈M ′; v〉 and we have n > 0 symbolic
executions

Σ ` 〈〈true;m〉 ; e〉 ⇓ 〈Si ; si〉 such that

exhaustive(g(S1), . . . , g(Sn)) and

〈E;M〉 ∼Λ0·V ·Λ 〈Σ;m〉 ,

then 〈M ′; v〉 ∼Λ′
0·V ′·Λ′ 〈m(Si); si〉 for some i ∈ 1..n, V ′ ⊇

V , and some Λ′0,Λ
′ such that Λ′0 ∗ Λ′ ⊇ Λ0 ∗ Λ.

Here we say that if we have n > 0 symbolic executions that each
start with a path condition of true and where their resulting path
conditions are exhaustive (i.e., g(S1)∨ . . .∨ g(Sn) is a tautology
meaning it holds under any valuation V ), then one of those sym-
bolic executions must match the concrete execution. Observe that
in this statement, there is no premise on the resulting path condi-
tion, but rather that we start with a initial path condition of true.

4. MIXY: A Prototype of MIX for C
We have developed MIXY, a prototype tool for C that uses MIX
to detect null pointer errors. MIXY mixes a (flow-insensitive) type
qualifier inference system with a symbolic executor. MIXY is built
on top of the CIL front-end for C [Necula et al. 2002], and our
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type qualifier inference system, CilQual, is essentially a simplified
CIL reimplementation of the type qualifier inference algorithm
described by Foster et al. [2006]. Our symbolic executor, Otter
[Reisner et al. 2010], uses STP [Ganesh and Dill 2007] as its SMT
solver and works in a manner similar to KLEE [Cadar et al. 2008].

Type Qualifiers and Null Pointer Errors. For this application, we
introduce two qualifier annotations for pointers: nonnull indicates
that a pointer must not be null, and null indicates that a pointer may
be null. Our inference system automatically annotates uses of the
NULL macro with the null qualifier annotation. The type qualifier
inference system generates constraints among known qualifiers
and unknown qualifier variables, solves those constraints, and then
reports a warning if null values may flow to nonnull positions.
Thus, our type qualifier inference system ensures pointers that may
be null cannot be used where non-null pointers are required.

For example, consider the following C code:

1 void free(int ∗nonnull x);
2 int ∗id(int ∗p) { return p; }
3 int ∗x = NULL;
4 int ∗y = id(x);
5 free(y);

Here on line 1 we annotate free to indicate it takes a nonnull pointer.
Then on line 3, we initialize x to be NULL, pass that value through
id, and store the result in y on line 4. Then on line 5 we call free
with NULL.

Our qualifier inference system will generate the following types
and constraints (with some simplifications, and ignoring l- and r-
value issues):

free : int ∗ nonnull→ void x : int ∗β
id : int ∗γ → int ∗δ y : int ∗ε

null = β β = γ γ = δ δ = ε ε = nonnull

Here β, γ, δ, and ε are variables that standard for unknown quali-
fiers. Put together, these constraints require null = nonnull, which
is not allowed, and hence qualifier inference will report an error for
this program.

Our symbolic executor also looks for null pointer errors. The
symbolic executor tracks C values at the bit level, using a repre-
sentation similar to KLEE [Cadar et al. 2008]. A null pointer is
represented as the value 0, and the symbolic executor reports an
error if 0 is ever dereferenced.

Typed and Symbolic Blocks. In our formal system, we allow
typed and symbolic blocks to be introduced anywhere in the
program. In MIXY, these blocks can only be introduced around
whole function bodies by annotating a function as MIX(typed) or
MIX(symbolic), and MIXY switches between qualifier inference and
symbolic execution at function calls. We can simulate blocks within
functions by manually extracting the relevant code into a fresh
function.

Skipping some details for the moment, this switching process
works as follows. When MIXY is invoked, the programmer speci-
fies (as a command-line option) whether to begin in a typed block or
a symbolic block. In either case, we first initialize global variables
as appropriate for the analysis, and then analyze the program start-
ing with main. In symbolic execution mode, we begin simulating
the program at the entry function, and at calls to functions that are
either unmarked or are marked as symbolic, we continue symbolic
execution into the function body. At calls to functions marked with
MIX(typed), we switch to type inference starting with that function.

In type inference mode, we begin analysis at the entry function
f, applying qualifier inference to f and all functions reachable from f
in the call graph, up to the frontier of any functions that are marked
with MIX(symbolic). We use CIL’s built-in pointer analysis to find

the targets of calls through function pointers. Finally, we switch
to symbolic execution for each function marked MIX(symbolic) that
was discovered at the frontier.

In this section, we describe implementation details that are not
captured by our formal system from Section 3:

• The formal system MIX is based on a type checking system
where all types are given. Since type qualifier inference in-
volves variables, we need to handle variables that are not yet
constrained to concrete type qualifiers when transitioning to a
symbolic block (Section 4.1).

• We need to translate information about aliasing between blocks
(Section 4.2).

• Since the same block or function may be called from multiple
contexts, we need to avoid repeating analysis of the same func-
tion (Section 4.3).

• Since functions can contain blocks and be recursive, we need
to handle recursion between typed and symbolic blocks (Sec-
tion 4.4).

Finally, we present our initial experience with MIXY (Section 4.5),
and we discuss some limitations and future work (Section 4.6).

4.1 Translating Null/Non-null and Type Variables
At transitions between typed and symbolic blocks, we need to
translate null and nonnull annotations back and forth.

From Types to Symbolic Values. Suppose local variable x has
type int ∗nonnull. Then in the symbolic executor, we initialize x
to point to a fresh memory cell. If x has type int ∗null, then we ini-
tialize x to be (α:bool)?loc:0, where α is a fresh boolean that may
be either true or false, loc is a newly initialized pointer (described
in Section 4.2), and 0 represents null. Hence this expression means
x may be either null or non-null, and the symbolic executor will try
both possibilities.

A more interesting case occurs if a variable x has a type with
a qualifier variable (e.g., int ∗β ). In this case, we first try to solve
the current set of constraints to see whether β has a solution as
either null or nonnull, and if it does, we perform the translation
given above. Otherwise, ifβ could be either, we first optimistically
assume it is nonnull.

We can safely use this assumption when returning from a typed
block to a symbolic block since such a qualifier variable can only
be introduced when variables are aliased (e.g., via pointer assign-
ment), a case that is separately taken into account by the MIXY
memory model (Section 4.2).

However, if we use this assumption when entering a symbolic
block from a typed block, we may later discover our assumption
was too optimistic. For example, consider the following code:

1 {t int ∗x;{s x = NULL; s};{s free(x); s}t}

In the type system, x has type int ∗ β , where initially β is uncon-
strained. Suppose that we analyze the symbolic block on the right
before the one on the left. This scenario could happen because the
analysis of the enclosing typed block does not model control-flow
order (i.e., is flow insensitive). Then initially, we would think the
call to free was safe because we optimistically treat unconstrained
β as nonnull—but this is clearly not accurate here.

The solution is, as expected, to repeat our analyses until we
reach a fixed point. In this case, after we analyze the left symbolic
block, we will discover a new constraint on x, and hence when we
iterate and reanalyze the right symbolic block, we will discover the
error. We are computing a least fixed point because we start with
optimistic assumptions—nothing is null—and then monotonically
discover more expressions may be null.

From Symbolic Values to Types. We use the SMT solver to
discover the possible final values of variables and translate those to
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the appropriate types. Given a variable x that is mapped to symbolic
expression s, we ask whether g ∧ (s = 0) is satisfiable where g is
the path condition. If the condition is satisfiable, we constrain x to
be null in the type system. There are no nonnull constraints to be
added since they correspond to places in code where pointers are
dereferenced, which is not reflected in symbolic values.

Thus, null pointers from symbolic blocks will lead to errors
in typed blocks if they flow to a nonnull position; whereas null
pointers from typed blocks will lead to errors in symbolic blocks if
they are dereferenced symbolically.

4.2 Aliasing and MIXY’s Memory Model
The formal system MIX defers all reasoning about aliasing to as
late of a time as possible. As alluded to in Section 3, this choice
may be difficult to implement in practice given limitations in the
constraint solver. Thus in MIXY, we use a pre-pass pointer analysis
to initialize aliasing relationships.

Typed to Symbolic Block. When we switch from a typed block
to a symbolic block, we initialize a fresh symbolic memory, which
may include pointers. We use a variant of the approach described in
Section 3 that makes use of aliasing information to be more precise.
Rather than modeling memory as one big array, MIXY models
memory as a map from locations to separate arrays. Aliasing within
arrays is modeled as in our formalism, and aliasing between arrays
is modeled using Morris’s general axiom of assignment [Bornat
2000; Morris 1982].

C also supports a richer variety of types such as arrays and
structs, as well as recursive data structures. MIXY lazily initializes
memory in an incremental manner so that we can sidestep the issue
of initializing an arbitrarily recursive data structure; MIXY only
initializes as much as is required by the symbolic block. We use
CIL’s pointer analysis to determine possible points-to relationships
and initialize memory accordingly.

Symbolic to Typed Block. An issue arises from using type infer-
ence when we switch from a symbolic block to a typed block. Con-
sider the following code snippets, which are identical except that y
points to r on the left, and y points to x on the right:

{s
// ∗y not aliased to x
int ∗x = . . . ;
int ∗r = . . . , ∗∗y = &r;
{t // okay

x = NULL;
assert nonnull(∗y); t}

s}

{s
// ∗y aliased to x
int ∗x = . . . ;
int ∗∗y = &x;
{t // should fail

x = NULL;
assert nonnull(∗y); t}

s}

In both cases, at entry to the typed blocks, x and ∗y are assigned
types β ref and γ ref respectively, based on their current values.
Notice, however, that for the code on the right, we should also
have β = γ . Otherwise, after the assignment x = NULL, we will
not know that ∗y is also NULL.

This example illustrates an important difference between type
inference and type checking. In type checking, this problem cannot
arise because every value has a known type, and we only have
to check that those types are consistent. However, type inference
actually has to discover richer information, such as what types must
be equal because of aliasing, in order to find a valid typing.

One solution to this problem would be to translate aliasing in-
formation from symbolic execution to and from type constraints. In
MIXY, we use an alternative solution that is easier to implement:
we use CIL’s built-in may pointer analysis to conservatively dis-
cover points-to relationships. When we transition from a symbolic
block to a typed block, we add constraints to require that all may-
aliased expressions have the same type.

4.3 Caching Blocks
In C, a block or function may be called from many different call
sites, so we may need to analyze that block in the context of
each call site. Since it can be quite costly to analyze that block
repeatedly, we cache the calling context and the results of the
analysis for that block, and we reuse the results when the block
is called again with a compatible calling context. Conceptually,
caching is similar to compositional symbolic execution [Godefroid
2007]; in MIXY, we implement caching as an extension to the
mix rules, using types to summarize blocks rather than symbolic
constraints.

Caching Symbolic Blocks. Before we translate the types from the
enclosing typed block to symbolic values, we first check to see
if we have previously analyzed the same symbolic block with a
compatible calling context. We define the calling context to be the
types for all variables that will be translated into symbolic values,
and we say two calling contexts are compatible if every variable
has the same type in both contexts.

If we have not analyzed the symbolic block before with a com-
patible calling context, we translate the types into symbolic values,
analyze the symbolic block, and translate the symbolic values to
types by adding type constraints as usual. At this point, we will
cache the translated types for this calling context; we cache the
translated types instead of the symbolic values since the translation
from symbolic values to types is expensive. Otherwise, if we have
analyzed the symbolic block before with a compatible calling con-
text, we use the cached results by adding null type constraints for
null cached types in a manner similar to translating symbolic val-
ues. Finally, in both cached and uncached cases, we restore aliasing
relationships and return to the enclosing typed block as usual.

Caching Typed Blocks. Caching for typed blocks is similarly im-
plemented, but with one difference: unlike above, we first translate
symbolic values into types, then use the translated types as the call-
ing context, and finally cache the final types as the result of analyz-
ing the typed block. We could have chosen to use symbolic values
as the calling context and the result, but since translating symbolic
values to types or comparing symbolic values both involve similar
number of calls to the SMT solver, we chose to use types to unify
the implementation.

4.4 Recursion between Typed and Symbolic Blocks
A typed block and a symbolic block may recursively call each
other, and we found block recursion to be surprisingly common
in our experiments. Without special handling for recursion, MIXY
will keep switching between them indefinitely since a block is
analyzed with a fresh initial state upon every entry. Therefore, we
need to detect when recursion occurs, either beginning with a typed
block or a symbolic block, and handle it specially.

To handle recursion, we maintain a block stack to keep track of
blocks that are currently being analyzed. Similar to a function call
stack, the block stack is a stack of blocks and their calling contexts,
which are defined in terms of types as in caching (Section 4.3). We
push blocks onto the stack upon entry and pop them upon return.

Before entering a block, we first look for recursion by search-
ing the block stack for the same block with a compatible calling
context. If recursion is detected, then instead of entering the block,
we mark the matching block on the stack as recursive and return an
assumption about the result. For the initial assumption, we use the
calling context of the marked block, optimistically assuming that
the block has no effect. When we eventually return to the marked
block, we compare the assumption with the actual result of analyz-
ing the block. If the assumption is compatible with the actual result,
we return the result; otherwise, we re-analyze the block using the
actual result as the updated assumption until we reach a fixed point.
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4.5 Preliminary Experience
We gained some initial experience with MIXY by running it on
vsftpd-2.0.7 and looking for false null pointer warnings from
pure type qualifier inference that can be eliminated with the addi-
tion of symbolic execution. Since MIXY is in the prototype stage,
we started small. Rather than annotate all dereferences as requiring
nonnull, we added just one nonnull annotation:

sysutil free(void ∗ nonnull p ptr) MIX(typed) { . . . }

The sysutil free function wraps the free system call and checks, at
run time, that the pointer argument is not null. In essence, our anal-
ysis tries to check this property statically. We annotated sysutil free
itself with MIX(typed), so MIXY need not symbolically execute its
body—our annotation captures the important part of its behavior
for our analysis.

We then ran MIXY on vsftpd, beginning with typing at the out-
ermost level. We examined the resulting warnings and then tried
adding MIX(symbolic) annotations to eliminate warnings. We suc-
ceeded in several cases, discussed next. We did not fully examine
many of the other cases, but Section 4.6 describes some prelimi-
nary observations about MIXY in practice. Note that the code snip-
pets shown below are abbreviated, and many identifiers have been
shortened. We should also point out that all the examples below
eliminate one or more imprecise qualifier flows from type qualifier
inference; this pruning may or may not suppress a given warning,
depending on whether other flows could produce the same warning.

Case 1: Flow and path insensitivity in sockaddr clear

1 void sockaddr clear(struct sockaddr ∗∗p sock) MIX(symbolic) {
2 if (∗p sock != NULL) {
3 sysutil free(∗p sock);
4 ∗p sock = NULL;
5 }
6 }

This function is implicated in a false warning: due to flow insen-
sitivity in the type system, the null assignment on line 4 flows to
the argument to sysutil free on line 3, even though the assignment
occurs after the call. Also, the type system ignores the null check
on line 2 due to path insensitivity.

Marking sockaddr clear with MIX(symbolic) successfully resolves
this warning: the symbolic executor determines that ∗p sock is not
null when used as an argument to sysutil free().

Case 2: Path and context insensitivity in str next dirent

1 void str alloc text(struct mystr∗ p str) MIX(typed);
2 const char∗ sysutil next dirent( . . . ) MIX(typed) {
3 if (p dirent == NULL) return NULL;
4 }
5 void str next dirent( . . . ) MIX(symbolic) {
6 const char∗ p filename = sysutil next dirent( . . . );
7 if (p filename != NULL)
8 str alloc text(p filename);
9 }

10 . . . str alloc text(str); sysutil free(str); . . .

In this example, the function str next direct calls sysutil next dirent
on line 6, which may return a null value. Hence p filename may be
null. The type system ignores the null check on line 7 and due to
context insensitivity, conflates p filename with other variables, such
as str, that are passed to str alloc text (lines 8 and 10). Hence the
type system believes str may be null. However, str is used as an
argument to sysutil free (line 10), which leads the type system to
report a false warning.

Annotating function str next dirent as symbolic, while leaving
sysutil next dirent and str alloc text as typed, successfully elim-
inates this warning: the symbolic executor correctly determines

that p filename is not null when it is used as an argument to
str alloc text. And although the extra precision does not matter
in this particular example, notice that the call on line 8 will be an-
alyzed in a separate invocation of the type system than the call on
line 10, thus introducing some context sensitivity.

Case 3: Flow and path insensitivity in dns resolve and main

1 void main BLOCK(struct sockaddr∗∗ p sock) MIX(symbolic) {
2 ∗p sock = NULL;
3 dns resolve(p sock, tunable pasv address);
4 }
5 int main( . . . ) {
6 . . .main BLOCK(&p addr); . . . ; sysutil free(p addr); . . .
7 }
8 void dns resolve(struct sockaddr∗∗ p sock,
9 const char∗ p name) {

10 struct hostent∗ hent = gethostbyname(p name);
11 sockaddr clear(p sock);
12 if (hent→h addrtype == AF INET)
13 sockaddr alloc ipv4(p sock);
14 else if (hent→h addrtype == AF INET6)
15 sockaddr alloc ipv6(p sock);
16 else
17 die(”gethostbyname(): neither IPv4 nor IPv6”);
18 }

There are two sources of null values in the code above: ∗p sock
is set to null on line 2; and sockaddr clear, which was previously
marked as symbolic in Case 1 above, also sets ∗p sock to null on
line 11 in dns resolve. Due to flow insensitivity in the type system,
both these null values eventually reach sysutil free on line 6, leading
to false warnings.

However, we can see that these null values are actually overwrit-
ten by non-null values on lines 13 and 15, where sockaddr alloc ipv4
or sockaddr alloc ipv6 allocates the appropriate structure and as-
signs it to ∗p sock (not shown). We can eliminate these warnings
by extracting the code in main that includes both null sources into
a symbolic block.

Also, there is a system call gethostbyname on line 10 that we
need to handle. Here, we define a well-behaved, symbolic model
of gethostbyname that returns only AF INET and AF INET6 as is
standard (not shown). This will cause the symbolic executor to skip
the last branch on line 17, which we need to do because we cannot
analyze die symbolically as it eventually calls a function pointer, an
operation that our symbolic executor currently has limited support
for. We also cannot put gethostbyname or die in typed blocks in this
case, since ∗p sock is null and will result in false warnings.

Case 4: Helping symbolic execution with symbolic function point-
ers

1 void sysutil exit BLOCK(void) MIX(typed) {
2 if (s exit func) (∗s exit func)();
3 }
4 void sysutil exit(int exit code) {
5 sysutil exit BLOCK();
6 exit(exit code);
7 }

In several instances, we would like to evaluate symbolic blocks
that call sysutil exit, defined on line 4, which in turn calls exit to
terminate the program. However, before terminating the program,
sysutil exit calls the function pointer s exit func on line 2. Our sym-
bolic executor does not support calling symbolic function pointers
(i.e., which targets are unknown), so instead, we extract the call to
s exit func into a typed block to analyze the call conservatively.
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4.6 Discussion and Future Work
Our preliminary experience provides some real-world validation
of MIX’s efficacy in removing false positives. However, there are
several limitations to be addressed in future work.

Most importantly, the overwhelming source of issues in MIXY
is its coarse treatment of aliasing, which relies on an imprecise
pointer analysis. One immediate consequence is that it impedes per-
formance in the symbolic executor: if an imprecise pointer analysis
returns large points-to sets for pointers, translating symbolic point-
ers to type constraints becomes slow because we first need to check
if each pointer target is valid in the current path condition by call-
ing the SMT solver, then determine if any valid targets may be null.
This leads to a significant slowdown: our small examples from Sec-
tion 4.5 take less than a second to run without symbolic blocks, but
from 5 to 25 seconds to run with one symbolic block, and about
60 seconds with two symbolic blocks. This issue is further com-
pounded by the fixed-point computation that repeatedly analyzes
symbolic blocks nested in typed blocks or for handling recursion.

We also noticed several cases in vsftpdwhere calls to symbolic
blocks would help introduce context sensitivity to distinguish calls
to malloc. However, since we rely on a context-insensitive pointer
analysis to restore aliasing relationships when switching to typed
blocks, these calls will again be conflated. The issue especially af-
fects the analysis of typed-to-symbolic-to-typed recursive blocks
because the nested typed blocks are polluted by aliasing relation-
ships from the entire program. A similar issue occurs with symbolic
blocks, as pointers are initialized to point to targets from the entire
program, rather than being limited to the enclosing context.

Just as in the formalism, MIXY has to consider the entire mem-
ory when switching from typed to symbolic or vice-versa. Since
this was a deliberate design decision, we were not surprised to find
out that this has an impact on performance and leads to many limi-
tations in practice. Any temporary violation of type invariants from
symbolic blocks would immediately be flagged when switching to
typed blocks, even if they have no effect on the code in the typed
blocks. In the other direction, symbolic blocks are forced to start
with a fresh memory when switching from typed blocks even if
there were no effects.

Ultimately, we believe that these issues can be addressed with
more precise information about aliasing as well as effects, perhaps
extracted directly from the type inference constraints and symbolic
execution.

In addition to checking for null pointer errors, we plan to ex-
tend MIXY to check other properties, such as data races, and to
mix other types of analysis together. We also plan to investigate au-
tomatic placement of type/symbolic blocks, i.e., essentially using
MIX as an intermediate language for combining analyses. One idea
is to begin with just typed blocks and then incrementally add sym-
bolic blocks to refine the result. This approach resembles abstrac-
tion refinement (e.g., Ball and Rajamani [2002]; Henzinger et al.
[2004]), except the refinement can be obtained using completely
different analyses instead of one particular family of abstractions.

5. Related Work
There are several threads of related work. There have been numer-
ous proposals for static analyses based on type systems; see Pals-
berg and Millstein [2008] for pointers. Symbolic execution was first
proposed by King [1976] as an enhanced testing strategy, but was
difficult to apply for many years. Recently, SMT solvers have be-
come very powerful, making symbolic execution much more at-
tractive as even very complex path conditions can be solved sur-
prisingly fast. There have been many recent, impressive results us-
ing symbolic execution for bug finding [Cadar et al. 2006, 2008;
Godefroid et al. 2005; Sen et al. 2005]. These systems use symbolic

execution to explore a small subset of the possible program paths,
since in the presence of loops with symbolic bounds, pure symbolic
execution will not terminate in a reasonable amount of time (unless
loop invariants are assumed). In the MIX formalism, in contrast, we
use symbolic execution in a sound manner by exploring all paths,
which is possible because we can use type checking on parts of the
code where symbolic execution takes too long. Of course, it is also
possible to mix unsound symbolic execution with type checking, to
gain whatever level of assurance the user desires.

There are several static analyses that can operate at different lev-
els of abstraction. Bandera [Corbett et al. 2000] is a model check-
ing system that uses abstraction-based program specialization, in
which the user specifies the exact abstractions to use. System Z
is an abstract interpreter generator in which the user can tune the
level of abstraction to trade off cost and precision [Yi and Harri-
son 1993]. Tuning these systems requires a deep knowledge of pro-
gram analysis. In contrast, we believe that MIX’s tradeoff is eas-
ier to understand—one selects between essentially no abstraction
(symbolic execution), or abstraction in terms of types, which are
arguably the most successful, well-understood static analysis.

MIX bears some resemblance to static analysis based on ab-
straction refinement, such as SLAM [Ball and Rajamani 2002],
BLAST [Henzinger et al. 2004], and client-driven pointer analy-
sis [Guyer and Lin 2005]. These tools incrementally refine their
abstraction of the program as necessary for analysis. Adding sym-
bolic blocks to a program can be seen as introducing a very precise
“refinement” of the program abstraction.

There are a few systems that combine type checking or infer-
ence with other analyses. Dependent types provide an elegant way
to augment standard type with very rich type refinements [Xi and
Pfenning 1999]. Liquid types combines Hindley-Milner style type
inference with predicate abstraction [Rondon et al. 2008, 2010].
Hybrid types combines static typing, theorem proving, and dy-
namic typing [Flanagan 2006]. All of these systems combine types
with refinements at a deep level—the refinements are placed “on
top of” the type structure. In contrast, MIX uses a much coarser
approach in which the precise analysis is almost entirely separated
from the type system, except for a thin interface between the two
systems.

Many others have considered the problem of combining pro-
gram analyses. A reduced product in abstract interpretation [Cousot
and Cousot 1979] is a theoretical description of the most precise
combination of two abstract domains. It is typically obtained via
manually defined reduction operators that depend on the domains
being combined. Another example of combining abstract domains
is the logical product of Gulwani and Tiwari [2006]. Combining
program analyses for compiler optimizations is also well-studied
(e.g., Lerner et al. [2002]). In all of these cases, the combinations
strengthen the kinds of derivable facts over the entire program.
With MIX, we instead analyze separate parts of the program with
different analyses. Finally, MIX was partially inspired by Nelson-
Oppen style cooperating decision procedures [Nelson and Oppen
1979]. One important feature of the Nelson-Oppen framework is
that it provides an automatic method for distributing the appropri-
ate formula fragments to each solver (if that the solvers match cer-
tain criteria). Clearly MIX is targeted at solving a very different
problem, but it would be an interesting direction for future work to
try to extend MIX into a similar framework that can automatically
integrate analyses that have appropriately structured interfaces.

6. Conclusion
We presented MIX, a new approach for mixing type checking and
symbolic execution to trade off efficiency and precision. The key
feature of our approach is that the mixed systems are essentially
completely independent, and they are used in an off-the-shelf man-
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ner. Only at the boundaries between typed blocks—which the user
inserts to indicate where type checking should be used—and sym-
bolic blocks—the symbolic checking annotation—do we invoke
special mix rules to translate information between the two sys-
tems. We proved that MIX is sound (which implies that type check-
ing and symbolic execution are also independently sound). We
also described a preliminary implementation, MIXY, which per-
forms null/non-null type qualifier inference for C. We identified
several cases in which symbolic execution could eliminate false
positives from type inference. In sum, we believe that MIX provides
a promising new approach to trade off precision and efficiency in
static analysis.
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A. Soundness
To show the soundness of MIX, we consider a standard big-step
operational semantics for our simple language of expressions (Sec-
tion A.1). We then show the soundness of type checking and sym-
bolic execution separately (Section A.2 and Section A.3, respec-
tively), which will provide the basis for MIX soundness (Sec-
tion A.4). This section is an expansion of Section 3.3.

Type soundness is entirely standard. For symbolic execution
soundness, we consider two notions in turn: when an execution
is sound with respect to a path of exploration and when a set
of executions cover all possible concrete execution paths. One
challenge for showing MIX soundness is that symbolic execution
allows a temporary violation of the type invariant on memory used
by the type checker, which must be restored before entering a type
checking phase.

A.1 Operational Semantics
Figure 5 gives a big-step operational semantics for our language
of expressions e. In these rules, M is a concrete memory that maps
locations l to values v. We make this a mapping, rather than a list, to
reflect the fact that the memory is actually updated on the running
system. The notation M [l 7→ v] indicates an update or extension

12



Big-Step Operational Semantics. E ` 〈M ; e〉 → 〈M ′; v〉

SVAR

E, x : v ` 〈M ;x〉 → 〈M ; v〉

SVAL

E ` 〈M ; v〉 → 〈M ; v〉

SPLUS
E ` 〈M ; e1〉 → 〈M1;n1〉 E ` 〈M1; e2〉 → 〈M2;n2〉

E ` 〈M ; e1 + e2〉 → 〈M2;n1 + n2〉

SEQ

E ` 〈M ; e1〉 → 〈M1; v1〉 E ` 〈M1; e2〉 → 〈M2; v2〉
E ` 〈M ; e1 = e2〉 → 〈M2; v1 = v2〉

SNOT
E ` 〈M ; e1〉 → 〈M1; b1〉

E ` 〈M ;¬e1〉 → 〈M1;¬b1〉

SAND
E ` 〈M ; e1〉 → 〈M1; b1〉 E ` 〈M1; e2〉 → 〈M2; b2〉

E ` 〈M ; e1 ∧ e2〉 → 〈M2; b1 ∧ b2〉

SIF-TRUE
E ` 〈M ; e1〉 → 〈M1; true〉 E ` 〈M1; e2〉 → 〈M2; v〉

E ` 〈M ; if e1 then e2 else e3〉 → 〈M2; v〉

SIF-FALSE
E ` 〈M ; e1〉 → 〈M1; false〉 E ` 〈M1; e3〉 → 〈M3; v〉

E ` 〈M ; if e1 then e2 else e3〉 → 〈M3; v〉

SLET
E ` 〈M ; e1〉 → 〈M1; v1〉

E, x : v1 ` 〈M1; e2〉 → 〈M2; v2〉
E ` 〈M ; let x = e1 in e2〉 → 〈M2; v2〉

SREF
E ` 〈M ; e1〉 → 〈M1; v1〉 l 6∈ dom(M1)

E ` 〈M ; ref e1〉 → 〈M1[l 7→ v1]; l〉

SASSIGN
E ` 〈M ; e1〉 → 〈M1; l〉

E ` 〈M1; e2〉 → 〈M2; v2〉 l ∈ dom(M2)

E ` 〈M ; e1 := e2〉 → 〈M2[l 7→ v2]; v2〉

SDEREF
E ` 〈M ; e1〉 → 〈M1; l1〉 l1 ∈ dom(M1)

E ` 〈M ; !e1〉 → 〈M1;M1(l1)〉

SSYMBLOCK
E ` 〈M ; e1〉 → 〈M1; v1〉

E ` 〈M ; {s e1 s}〉 → 〈M1; v1〉

STYPBLOCK
E ` 〈M ; e1〉 → 〈M1; v1〉

E ` 〈M ; {t e1 t}〉 → 〈M1; v1〉

Figure 5. Standard big-step operational semantics.

Type Checking. Γ ` e : τ

TVAR

Γ, x : τ ` x : τ

TINT

Γ ` n : int

TBOOL

Γ ` b : bool

TPLUS
Γ ` e1 : int Γ ` e2 : int

Γ ` e1 + e2 : int

TEQ

Γ ` e1 : τ Γ ` e2 : τ

Γ ` e1 = e2 : bool

TNOT
Γ ` e : bool

Γ ` ¬e : bool

TAND
Γ ` e1 : bool Γ ` e2 : bool

Γ ` e1 ∧ e2 : bool

TIF
Γ ` e1 : bool Γ ` e2 : τ Γ ` e3 : τ

Γ ` if e1 then e2 else e3 : τ

TLET
Γ ` e1 : τ1 Γ, x : τ1 ` e2 : τ2

Γ ` let x = e1 in e2 : τ2

TREF
Γ ` e : τ

Γ ` ref e : τ ref

TASSIGN
Γ ` e1 : τ ref Γ ` e2 : τ

Γ ` e1 := e2 : τ

TDEREF
Γ ` e : τ ref

Γ ` !e : τ

Figure 6. Standard type checking rules.

of M so that l 7→ v (depending on whether or not l ∈ dom(M),
respectively). We consider the set of locations to be included in the
set of values. The basic form of the evaluation judgment

E ` 〈M ; e〉 → 〈M ′; v〉

says that in a concrete environment E, an initial memory M and
an expression e evaluate to a resulting memory M ′ and a value v.
A concrete environment maps variables to values (i.e., we define
E ::= ∅ | E, x : v). To indicate boolean values, we use the meta-
variable b (i.e., we let b ::= false | true). To reiterate and make it
explicit, we work with following semantic domains:

v ∈ Val concrete values
x ∈ Var program variables
l ∈ Loc ⊆ Val memory locations

E : Var ⇀fin Val = Env concrete environments
M : Loc ⇀fin Val = Mem concrete memories

In addition to the rules shown in Figure 5, there are also rules
that produce error when none of these rules apply, which is also
standard. We define

r ::= 〈M ; v〉 | error

as the result of an execution, so the general form of our execution
judgment is as follows:

E ` 〈M ; e〉 → r

For example, we have the following error rule for ¬e:
SNOT-ERROR
E ` 〈M ; e1〉 → r1 r1 6= 〈M1; b1〉

E ` 〈M ;¬e1〉 → error

A.2 Type Soundness
Figure 6 shows the type checking rules for our language. Again,
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these rules are entirely standard. As usual, we introduce a memory
type environment Λ that maps locations to types, and we update the
typing judgment to carry this additional environment:

Γ `Λ e : τ

Because Λ is constant in all rules, we elide it except where needed
for clarity in presentation. The memory type environment Λ is used
to assign types to locations l; specifically, we add the following
typing rule:

TLOC

Γ `Λ l : Λ(l) ref

We write Λ′ ⊇ Λ if Λ′ is an extension of Λ. Formally, Λ′ ⊇ Λ if

dom(Λ′) ⊇ dom(Λ) and Λ′(l) = Λ(l) for all l ∈ dom(Λ) .

We also use the same notation for other mapping extensions.
To prove type soundness, we define a soundness relation that

says that the values in the concrete environment and concrete mem-
ory are consistent with the type environments (Definition 2).

Definition 2 (Type State Soundness Relation)
We define soundness relations for type environments as follows:

〈E;M〉 ∼ 〈Γ; Λ〉 if

E ∼ 〈Γ; Λ〉 and M ∼ Λ

E ∼ 〈Γ; Λ〉 if

∅ `Λ E(x) : Γ(x) for all x ∈ dom(E) = dom(Γ)

M ∼ Λ if

∅ `Λ M(l) : Λ(l) for all l ∈ dom(M) = dom(Λ)

The following theorem states type soundness and is proved only
for the rules in Figure 6 (i.e., everything excluding the nested block
rule in Figure 4).

Theorem 3 (Type Soundness)
If

E ` 〈M ; e〉 → r and

Γ `Λ e : τ such that

〈E;M〉 ∼ 〈Γ; Λ〉 ,

then ∅ `Λ′ v : τ and M ′ ∼ Λ′ for some M ′, v, and Λ′ such that
r = 〈M ′; v〉 and Λ′ ⊇ Λ.

PROOF
By induction on the derivation of E ` 〈M ; e〉 → r.

Notice that above theorem says that r, the result of evaluating a
well-typed expression, cannot be error.

A.3 Symbolic Execution Soundness
Intuitively, symbolic execution begins with symbolic values α for
unknown inputs and accumulates a symbolic expression s that
represents the result of the program along a path. Thus, at a high-
level, a symbolic execution is sound along a path if interpreting
the symbolic result under an assignment to the symbolic values
(i.e., the unknowns) yields the same value as the concrete execution
along that path.

To capture this assignment to symbolic values, or valuation, we
write

V : SymVal ⇀fin Val ∪Mem

for a finite mapping from symbolic values α (drawn from set
SymVal) to concrete values v (from Val) or concrete memories

Concretization. JsKV = v JΣKV = E JmKV = M

Ju:τKV def
= JuKV

JαKV def
= V (α)

JvKV def
= v

Ju1:int + u2:intKV def
= Ju1KV + Ju2KV

Js1 = s2KV
def
= Js1KV = Js2KV

J¬gKV def
= ¬JgKV

Jg1 ∧ g2KV
def
= Jg1KV ∧ Jg2KV

Jm[u:τ ref]KV def
= JmKV (JuKV )

JµKV def
= V (µ)

Jm, (s1 � s2)KV def
= JmKV

ˆ
Js1KV 7→ Js2KV

˜
Jm, (s1

a� s2)KV def
= JmKV

ˆ
Js1KV 7→ Js2KV

˜
J∅KV def

= ∅

JΣ, x : sKV def
= JΣKV , x : JsKV

Figure 7. Interpretation of symbolic expressions, symbolic mem-
ories, and symbolic environments.

M (from Mem). Recall that a concrete environment

E : Var ⇀fin Val

is a finite mapping from variables to values, and a concrete memory

M : Loc ⇀fin Val

is a finite mapping from locations to values.
Given a valuation V , the interpretation of symbolic expressions,

symbolic memories, and symbolic environments is largely as ex-
pected, which we define in Figure 7. We write the following for
these interpretations:

JsKV = v JmKV = M JΣKV = E

The interpretation of symbolic expressions ignores the type annota-
tion, though would be ill-defined if the symbolic expressions were
not well-typed with respect to the valuation V .

Our typed symbolic execution tracks the type of symbolic ex-
pressions (i.e., the type of the value under any valuation that re-
spects the types of the unknowns) and halts upon encountering ill-
typed expressions. Observe that this behavior matches the concrete
executor (i.e., the big-step operational semantics in Figure 5). This
typing of symbolic expressions must be with respect to a memory
typing Λ and thus must be part of the soundness relation. More-
over, the symbolic executor distinguishes between the locations in
the arbitrary memory on entry and the locations that come from al-
locations during execution, which must be reflected in the symbolic
state soundness relation.

Definition 4 (Symbolic State Soundness Relation)
We define soundness relations for environment-memory pairs and
memory-value pairs using the concretization defined above, which
are parametrized by a valuation V , a memory typing for the arbi-
trary memory on entry Λ0, and the memory typing for locations
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allocated during symbolic execution Λ.

〈E;M〉 ∼Λ0·V ·Λ 〈Σ;m〉 if

JΣKV = E and E ∼ 〈Γ; Λ0 ∗ Λ〉 and
` Σ : Γ for some Γ and

JmKV = M and Λ0 `V m : Λ0 ∗ Λ

〈M ; v〉 ∼Λ0·V ·Λ 〈m;u:τ〉 if

JmKV = M and Λ0 `V m : Λ0 ∗ Λ and

Ju:τKV = v and ∅ `Λ0∗Λ v : τ

where we write Λ1 ∗ Λ2 to mean the memory typing that is the
union of submemory typings Λ1 and Λ2 with disjoint domains.

There are several pieces to these definitions:

1. The interpretation of a symbolic part under the valuation V
yields the concrete part (e.g., JΣKV = E).

2. Under the valuation V , all symbolic expressions (e.g., u:τ )
correspond to values that are well-typed in a concrete memory
with typing Λ0 ∗ Λ (e.g., ∅ `Λ0∗Λ Ju:τKV : τ ).

To check this second piece for writes and allocations in m, the
soundness relations depend on the following auxiliary judgment on
symbolic memories:

Λ `V m : Λ′

The above judgment says that under a valuation V , a symbolic
memory m corresponds to a concrete memory whose location
types are given by Λ′ and all symbolic expressions that record
writes and allocations are well-typed according to Λ′. The memory
typing Λ gives a hypothesis on the location types of the initial
memory µ. In summary, we can show that if Λ `V m : Λ′, then
dom(Λ′) = dom(JmKV ). The rules that define the above judgment
are as follows:

MTHYP
V (µ) ∼ Λ0

Λ0 `V µ : Λ0

MTUPDATE

Λ0 `V m : Λ ∅ `Λ Ju1:τ1KV : τ1 ∅ `Λ Ju2:τ2KV : τ2

Λ0 `V m, (u1:τ1 � u2:τ2) : Λ

MTALLOC

Λ0 `V m : Λ ∅ `Λ Ju:τKV : τ V (α) 6∈ dom(JmKV )

Λ0 `V m, (α:τ ref
a� u:τ) : (Λ, V (α) : τ)

Rule MTHYP asserts that the concrete initial memory given by
V (µ) is typed by Λ0. Then, rules MTUPDATE and MTALLOC
check that the symbolic expressions in the update-allocation log are
well-typed, that is, the concretization of each symbolic expression
has the type claimed by its typing annotation (e.g., observe τ1
in the premise ∅ `Λ Ju1:τ1KV : τ1 of MTUPDATE). However,
this judgment does not ensure that writes are well-typed (i.e., in
MTUPDATE, types τ1 and τ2 do not need to be compatible), as
symbolic execution allows temporarily type-inconsistent memory.

Temporarily Type-Inconsistent Memory. A property of symbolic
execution is that it does not require all writes to be consistent with
the memory typing (i.e., Λ0 ∗ Λ), as long as the consistency is
restored before assigning types to expressions that use memory.
This temporary violation of the memory typing invariant allows us
to obtain, for example, flow-sensitive type checking. The memory
type consistency judgment is a validation that the memory typing
invariant gets restored, and its soundness is stated as follows:

Lemma 5 (Memory Type Consistency Soundness)
If ` m ok U and Λ0 `V m : Λ, then

∅ `Λ JmKV (l) : Λ(l) for all l ∈ dom(Λ)\L
where

L =
[

s1�s2∈U

Js1KV .

As a corollary, if

` m ok and Λ0 `V m : Λ ,

then JmKV ∼ Λ.

PROOF
By induction on the derivation of ` m ok U .

Informally, the above says that if we have a symbolic mem-
ory m that we have checked for consistency (i.e., ` m ok U ), a
memory typing invariant Λ, and a valuation V , then the concrete
memory under the valuation V is consistent with Λ at all locations
except perhaps those in the potentially inconsistent set U . When
U is empty, then we know we have restored the memory typing
invariant.

Soundness of Symbolic Execution along a Path. For the proof
of symbolic execution soundness, we need a technical lemma—
Lemma 6 (Path Condition Prefix)—that says that the executor only
adds constraints to the path condition g(S) (i.e., the path condition
becomes stronger monotonically).
Lemma 6 (Path Condition Prefix)
If Σ ` 〈S ; e〉 ⇓ 〈S′ ; s〉 and Jg(S′)KV , then Jg(S)KV .

PROOF
By induction on the derivation of Σ ` 〈S ; e〉 ⇓ 〈S′ ; s〉.

Finally, we can show the soundness of symbolic execution along
a path. Observe the key premise Jg(S′)KV , which says that the path
condition accumulated during symbolic execution holds under this
valuation. This constraint allows us to state that the given concrete
and symbolic executions follow the same path. The following the-
orem is proven only for the rules in Figure 2 and Figure 3 (i.e.,
everything excluding the nested block rule in Figure 4).
Theorem 7 (Symbolic Execution Soundness)
If

E ` 〈M ; e〉 → r and

Σ ` 〈S ; e〉 ⇓ 〈S′ ; s〉 such that

〈E;M〉 ∼Λ0·V ·Λ 〈Σ;m(S)〉 and Jg(S′)KV ,

then
r ∼Λ′

0·V ′·Λ′ 〈m(S′); s〉
for some V ′ ⊇ V and some Λ′0,Λ

′ such that Λ′0 ∗ Λ′ ⊇ Λ0 ∗ Λ.
PROOF
By induction on the derivation of E ` 〈M ; e〉 → r.

Case SVAR
By assumption, we have that

SVAR

E, x : v ` 〈M ;x〉 → 〈M ; v〉
The only symbolic execution rule that applies is SEVAR.

SEVAR

Σ, x : s ` 〈S ; x〉 ⇓ 〈S ; s〉
Since by assumption, we have that

〈E, x : v;M〉 ∼Λ0·V ·Λ 〈Σ, x : s;m(S)〉 ,
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so trivially, we have that

〈M ; v〉 ∼Λ′
0·V ′·Λ′ 〈m(S); s〉

by choosing V ′ = V , Λ′0 = Λ0, and Λ′ = Λ.

Case SVAL
Trivial.

Case SPLUS
By assumption, we have that

SPLUS
E1 :: E ` 〈M ; e1〉 → 〈M1;n1〉
E2 :: E ` 〈M1; e2〉 → 〈M2;n2〉

E ` 〈M ; e1 + e2〉 → 〈M2;n1 + n2〉
The only symbolic execution rule that applies is SEPLUS.

SEPLUS
S1 :: Σ ` 〈S ; e1〉 ⇓ 〈S1 ; u1:int〉
S2 :: Σ ` 〈S1 ; e2〉 ⇓ 〈S2 ; u2:int〉

Σ ` 〈S ; e1 + e2〉 ⇓ 〈S2 ; (u1:int + u2:int):int〉

By assumption, we have that Jg(S2)KV , so Jg(S1)KV since it is
path condition prefix of Jg(S2)KV (Lemma 6 on S2). Also, by
assumption, we have that

〈E;M〉 ∼Λ0·V ·Λ 〈Σ;m(S)〉 ,

so

〈M1;n1〉 ∼Λ′′
0 ·V1·Λ1 〈m(S1);u1:int〉

for some V1 ⊇ V and some Λ′′0 ∗ Λ1 ⊇ Λ0 ∗ Λ by i.h. on E1

with S1. Then, we have that

〈E;M1〉 ∼Λ′′
0 ·V1·Λ1 〈Σ;m(S1)〉

and Jg(S2)KV1 because V1 ⊇ V , so

〈M2;n2〉 ∼Λ′
0·V ′·Λ′ 〈m(S2);u2:int〉

for some V ′ ⊇ V1 ⊇ V and some Λ′0 ∗ Λ′ ⊇ Λ′′0 ∗ Λ1 ⊇
Λ0 ∗ Λ by i.h. on E2 with S2. Since V ′ ⊇ V1, we have that
Ju1:intKV

′
= n1, so

J(u1:int + u2:int):intKV
′

= n1 + n2

and thus

〈M2;n1 + n2〉 ∼Λ′
0·V ′·Λ′ 〈m(S2); (u1:int + u2:int):int〉 .

Case SEQ, SNOT, SAND
Similar to the case for SPLUS.

Case SIF-TRUE
By assumption, we have that

SIF-TRUE
E1 :: E ` 〈M ; e1〉 → 〈M1; true〉
E2 :: E ` 〈M1; e2〉 → 〈M2; v〉

E ` 〈M ; if e1 then e2 else e3〉 → 〈M2; v〉
The only symbolic execution rules that could apply are SEIF-TRUE
or SEIF-FALSE.

Sub-case SEIF-TRUE

SEIF-TRUE
S1 :: Σ ` 〈S ; e1〉 ⇓ 〈S1 ; g1〉

S2 :: Σ ` 〈S1[g 7→ g(S1) ∧ g1] ; e2〉 ⇓ 〈S2 ; s2〉
Σ ` 〈S ; if e1 then e2 else e3〉 ⇓ 〈S2 ; s2〉

By assumption, we have that Jg(S2)KV , so Jg(S1) ∧ g1KV

since it is path condition prefix of Jg(S2)KV (Lemma 6 on
S2). Thus, we have that Jg(S1)KV . By assumption, we have
that

〈E;M〉 ∼Λ0·V ·Λ 〈Σ;m(S)〉 ,
so

〈M1; true〉 ∼Λ′′
0 ·V1·Λ1 〈m(S1); g1〉

for some V1 ⊇ V and some Λ′′0 ∗ Λ1 ⊇ Λ0 ∗ Λ by i.h. on
E1 with S1. We have that

〈E;M1〉 ∼Λ′′
0 ·V1·Λ1 〈Σ;m(S1)〉

and Jg(S2)KV1 because V1 ⊇ V , so

〈M2; v〉 ∼V ′ 〈m(S2); s2〉
for some V ′ ⊇ V1 ⊇ V and some Λ′0 ∗ Λ′ ⊇ Λ′′0 ∗ Λ1 ⊇
Λ′0 ∗ Λ by i.h. on E2 with S2.

Sub-case SEIF-FALSE

SEIF-FALSE
S1 :: Σ ` 〈S ; e1〉 ⇓ 〈S1 ; g1〉

S2 :: Σ ` 〈S[g 7→ g(S1) ∧ ¬g1] ; e3〉 ⇓ 〈S3 ; s3〉
Σ ` 〈S ; if e1 then e2 else e3〉 ⇓ 〈S3 ; s3〉

By assumption, we have that Jg(S3)KV , so Jg(S1) ∧ ¬g1KV

since it is path condition prefix of Jg(S3)KV (Lemma 6 on
S2). Thus, we have that Jg(S1)KV and J¬g1KV . By assump-
tion, we have that

〈E;M〉 ∼Λ0·V ·Λ 〈Σ;m(S)〉 ,
so

〈M1; true〉 ∼Λ′′
0 ·V1·Λ1 〈m(S1); g1〉

for some V1 ⊇ V and some Λ′′0 ∗ Λ1 ⊇ Λ0 ∗ Λ by i.h.
on E1 with S1. Thus, we have that Jg1KV1 . We also have that
J¬g1KV1 because J¬g1KV and V1 ⊇ V . Contradiction, both of
these statements cannot hold, so this subcase is not possible.

Case SIF-FALSE
Similar to the case for SIF-TRUE.

Case SLET
By assumption, we have that

SLET
E1 :: E ` 〈M ; e1〉 → 〈M1; v1〉

E2 :: E, x : v1 ` 〈M1; e2〉 → 〈M2; v2〉
E ` 〈M ; let x = e1 in e2〉 → 〈M2; v2〉

The only symbolic execution rule that applies SELET.
SELET

S1 :: Σ ` 〈S ; e1〉 ⇓ 〈S1 ; s1〉
S2 :: Σ, x : s1 ` 〈S1 ; e2〉 ⇓ 〈S2 ; s2〉
Σ ` 〈S ; let x = e1 in e2〉 ⇓ 〈S2 ; s2〉

By assumption, we have that Jg(S2)KV , so Jg(S1)KV since it is
path condition prefix of Jg(S2)KV (Lemma 6 on S2). Also, by
assumption, we have that

〈E;M〉 ∼Λ0·V ·Λ 〈Σ;m(S)〉 ,
so

〈M1; v1〉 ∼Λ′′
0 ·V1·Λ1 〈m(S1); s1〉

for some V1 ⊇ V and some Λ′′0 ∗ Λ1 ⊇ Λ0 ∗ Λ by i.h. on E1

with S1. Then, because Js1KV1 = v1, we have that

〈E, x : v1;M1〉 ∼Λ′′
0 ·V1·Λ1 〈Σ, x : s1;m(S1)〉 .
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Also, Jg(S2)KV1 because V1 ⊇ V , so

〈M2; v2〉 ∼Λ′
0·V ′·Λ′ 〈m(S2); s2〉

for some V ′ ⊇ V1 ⊇ V and some Λ′0 ∗ Λ′ ⊇ Λ′′0 ∗ Λ1 ⊇ Λ0 ∗
Λ by i.h. on E2 with S2.

Case SREF
By assumption, we have that

SREF
E1 :: E ` 〈M ; e1〉 → 〈M1; v1〉 l 6∈ dom(M1)

E ` 〈M ; ref e1〉 → 〈M1[l 7→ v1]; l〉
The only symbolic execution rule that applies is SEREF.

SEREF
S1 :: Σ ` 〈S ; e1〉 ⇓ 〈S1 ; u1:τ〉 β /∈ Σ, S, S1, u1

S′ = S1[m 7→ m(S1), (β:τ ref
a� u1:τ)]

Σ ` 〈S1 ; ref e1〉 ⇓ 〈S′ ; β:τ ref〉
Also by assumption, we have that

〈E;M〉 ∼Λ0·V ·Λ 〈Σ;m(S)〉 and Jg(S1)KV

since g(S′) = g(S1), so

〈M1; v1〉 ∼Λ′
0·V1·Λ1 〈m(S1);u1:τ〉

for some V1 ⊇ V and some Λ′0 ∗ Λ1 ⊇ Λ0 ∗ Λ by i.h. on
E1 with S1. Since β 6∈ Σ, S, S1, u1, we can assume without
loss of generality that β 6∈ dom(V1)—if it were in dom(V1), we
could always remove it without affecting 〈M1; v1〉 ∼Λ′

0·V1·Λ1

〈m(S1);u1:τ〉. Now, choose

V ′ = V1[β 7→ l] and Λ′ = Λ1, l : τ .

Because l 6∈ dom(M1), we have that

Λ′0 `V ′ m(S2), (β:τ ref
a� u1:τ) : Λ′0 ∗ Λ′ .

and thus
〈M1[l 7→ v1]; l〉
∼Λ′

0·V ′·Λ′

〈m(S1), (β:τ ref � u1:τ);β:τ ref〉 .

Case SASSIGN
By assumption, we have that

SASSIGN
E1 :: E ` 〈M ; e1〉 → 〈M1; l〉

E2 :: E ` 〈M1; e2〉 → 〈M2; v2〉 l ∈ dom(M2)

E ` 〈M ; e1 := e2〉 → 〈M2[l 7→ v2]; v2〉
The only symbolic execution rule that applies is SEASSIGN.

SEASSIGN
S1 :: Σ ` 〈S ; e1〉 ⇓ 〈S1 ; s1〉
S2 :: Σ ` 〈S1 ; e2〉 ⇓ 〈S2 ; s2〉

Σ ` 〈S ; e1 := e2〉 ⇓ 〈S2[m 7→ m(S2), (s1 � s2)] ; s2〉

By assumption, we have that Jg(S2)KV , so Jg(S1)KV since it is
path condition prefix of Jg(S2)KV (Lemma 6 on S2). Also, by
assumption, we have that

〈E;M〉 ∼Λ0·V ·Λ 〈Σ;m(S)〉 ,

so
〈M1; l〉 ∼Λ′′

0 ·V1·Λ1 〈m(S1); s1〉
for some V1 ⊇ V and some Λ′′0 ∗ Λ1 ⊇ Λ0 ∗ Λ by i.h. on E1

with S1. Then, we have that

〈E;M1〉 ∼Λ′′
0 ·V1·Λ1 〈Σ;m(S1)〉

and Jg(S2)KV1 because V1 ⊇ V , so

〈M2; v2〉 ∼Λ′
0·V ′·Λ′ 〈m(S2); s2〉

for some V ′ ⊇ V1 and Λ′0 ∗ Λ′ ⊇ Λ′′0 ∗ Λ1 by i.h. on E2 with
S2. Thus, we have

Λ′0 `V ′ m(S2) : Λ′0 ∗ Λ′ .

Since V ′ ⊇ V1 and Λ′0 ∗ Λ′ ⊇ Λ′′0 ∗ Λ1, we have that

Ju1:τ1KV
′

= l and ∅ `Λ0∗Λ′ l : τ1

where s1 = u1:τ1. Therefore, the symbolic memory relation
holds for the symbolic memory with the logged write:

Λ′0 `V ′ m(S2), (s1 � s2) : Λ′0 ∗ Λ′ .

Finally, because l ∈ dom(M2), we have that

〈M2[l 7→ v2]; v2〉 ∼Λ′
0·V ′·Λ′ 〈m(S2), (s1 � s2); s2〉 .

Case SDEREF
By assumption, we have that

SDEREF
E1 :: E ` 〈M ; e1〉 → 〈M1; l1〉 l1 ∈ dom(M1)

E ` 〈M ; !e1〉 → 〈M1;M1(l1)〉
The only symbolic execution rule that applies is SEDEREF.

SEDEREF
S1 :: Σ ` 〈S ; e1〉 ⇓ 〈S1 ; u1:τ ref〉 M :: ` m(S1) ok

Σ ` 〈S ; !e1〉 ⇓ 〈S1 ;m(S1)[u1:τ ref]:τ〉
Also by assumption, we have that

〈E;M〉 ∼Λ0·V ·Λ 〈Σ;m(S)〉 and Jg(S1)KV ,

so
〈M1; l1〉 ∼Λ′

0·V ′·Λ′ 〈m(S1);u1:τ ref〉
for some V ′ ⊇ V and Λ′0 ∗ Λ′ ⊇ Λ0 ∗ Λ by i.h. on E1 with
S1. Thus, we have that

Λ′0 `V ′ m(S1) : Λ′0 ∗ Λ′

and
∅ `Λ′

0∗Λ′ Ju1:τ refKV
′

: τ ref .

By memory typing soundness (Lemma 5) on M , we have that
Jm(S1)KV

′
∼ Λ′0 ∗ Λ′. Therefore, we have that

∅ `Λ′
0∗Λ′ Jm(S1)[u1:τ ref]KV

′
: τ

as l1 ∈ dom(M1), which shows

〈M1;M1(l1)〉 ∼Λ′
0·V ′·Λ′ 〈m(S1);m(S1)[u1:τ ref]〉 .

Case SNOT-ERROR
By assumption, we have that

SNOT-ERROR
E1 :: E ` 〈M ; e1〉 → r1 r1 6= 〈M1; b1〉

E ` 〈M ;¬e1〉 → error

The only symbolic execution rule that applies is SENOT.
SENOT
S1 :: Σ ` 〈S ; e1〉 ⇓ 〈S1 ; g1〉

Σ ` 〈S ; ¬e1〉 ⇓ 〈S1 ; ¬g1:bool〉
Also by assumption, we have that

〈E;M〉 ∼Λ0·V ·Λ 〈Σ;m(S)〉 and Jg(S1)KV ,

so
r1 ∼Λ′

0·V ′·Λ′ 〈m(S1); g1〉
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for some V ′ ⊇ V and Λ′0 ∗ Λ′ ⊇ Λ0 ∗ Λ by i.h. on E1 with
S1. Thus, r1 = 〈M1; v1〉 for some M1 and v1 such that

∅ `Λ′
0∗Λ′ v1 : bool

Therefore, by a standard canonical forms lemma, v1 = b1 for
some b1, which contradicts that r1 6= 〈M1; b1〉. Therefore, this
case is not possible.

Case Other ERROR Cases
Similar to SNOT-ERROR.

Exhaustive Symbolic Execution. With the soundness along a
path, we can state what it means for symbolic execution to be
exhaustive. To do so, we say

exhaustiveg(g1, . . . , gn) if g ⇒ g1 ∨ . . . ∨ gn is a tautology.

In other words, regardless of the valuation, the path conditions are
exhaustive up to an initial guard g.

Exhaustive symbolic execution, a corollary to symbolic execu-
tion soundness (Theorem 7), can be stated as follows. Observe that
the premise Jg(S)KV only says that the path condition holds in the
initial state.

Corollary 7.1 (Exhaustive Symbolic Execution)
Suppose E ` 〈M ; e〉 → 〈M ′; v〉 and we have n > 0 symbolic
executions

Σ ` 〈S ; e〉 ⇓ 〈Si ; si〉 such that

exhaustiveg(S)(g(S1), . . . , g(Sn)) and

〈E;M〉 ∼Λ0·V ·Λ 〈Σ;m(S)〉 and Jg(S)KV ,

then 〈M ′; v〉 ∼Λ′
0·V ′·Λ′ 〈m(Si); si〉 for some i ∈ 1..n, V ′ ⊇

V , and some Λ′0,Λ
′ such that Λ′0 ∗ Λ′ ⊇ Λ0 ∗ Λ.

PROOF
Direct. The meaning of exhaustiveg(S)(g(S1), . . . , g(Sn)) is
that g(S)⇒ g(S1) ∨ . . . ∨ g(Sn) is a tautology. Therefore, we
have that

Jg(S)KV ⇒ Jg(S1) ∨ . . . ∨ g(Sn)KV

because the above holds for all valuations. By assumption,
Jg(S)KV , so we have that Jg(S1) ∨ . . . ∨ g(Sn)KV and con-
sider cases. Suppose Jg(Si)KV for each i ∈ 1..n, then

〈M ′; v〉 ∼Λ′
0·V ′·Λ′ 〈m(Si); si〉

for some V ′ ⊇ V and some Λ′0 ∗ Λ′ ⊇ Λ0 ∗ Λ by symbolic
execution soundness (Theorem 7).

As a technical point, the concerned reader might be worried that we
are commingling existentially quantified variables (i.e., the sym-
bolic variables α) from different runs of the symbolic executor
in exhaustive (. . .); however, this commingling is permissible, as
we are combining with disjuncts and existential quantification dis-
tributes over disjunction. At the same time, for debugging in an
implementation, we would likely want a fixed, deterministic strat-
egy that ensures that symbolic executions of common prefixes of
paths use the same sequence of symbolic variable names.

A.4 MIX Soundness
With type soundness (Theorem 3) and symbolic execution sound-
ness (Theorem 7), we show soundness of MIX by additionally con-
sidering the cases for the switching rules.

Theorem 8 (MIX Soundness)
1. If

E ` 〈M ; e〉 → r and

Γ `Λ e : τ such that

〈E;M〉 ∼ 〈Γ; Λ〉 ,
then ∅ `Λ′ v : τ and M ′ ∼ Λ′ for some M ′, v, Λ′ such that
r = 〈M ′; v〉 and Λ′ ⊇ Λ.

2. If

E ` 〈M ; e〉 → r and

Σ ` 〈S ; e〉 ⇓ 〈S′ ; s〉 such that

〈E;M〉 ∼Λ0·V ·Λ 〈Σ;m(S)〉 and Jg(S′)KV ,

then
r ∼Λ′

0·V ′·Λ′ 〈m(S′); s〉
for some V ′ ⊇ V and some Λ′0,Λ

′ such that Λ′0 ∗ Λ′ ⊇ Λ0 ∗
Λ.

PROOF
By simultaneous induction on the derivations of

E ` 〈M ; e〉 → r .

We include the cases from type soundness (Theorem 3) and sym-
bolic execution soundness (Theorem 7) unchanged and consider
the additional mix cases (Figure 4).

Case SSYMBLOCK
By assumption, we have that

SSYMBLOCK
E1 :: E ` 〈M ; e1〉 → 〈M1; v1〉
E ` 〈M ; {s e1 s}〉 → 〈M1; v1〉

The only type checking or symbolic execution rule that applies
is the type checking rule TSYMBLOCK.

TSYMBLOCK
Σ(x) = αx:Γ(x) (for all x ∈ dom(Γ))

Σ ` 〈S ; e〉 ⇓ 〈Si ; ui:τ〉 S = 〈true ; µ〉 µ /∈ Σ
` m(Si) ok exhaustive(g1, . . . , gn) (i ∈ 1..n)

Γ ` {s e s} : τ

By assumption, we have that 〈E;M〉 ∼ 〈Γ; Λ〉. Let V be the
valuation such that

V (αx) = E(x) for all x ∈ dom(Γ) and
V (µ) = M

Now, choose Λ0 = Λ, and we have that

〈E;M〉 ∼Λ0·V ·∅ 〈Σ;m(S)〉
As we have exhaustive(g(S1), . . . , g(Sn)), we have that g(S1)∨
. . . ∨ g(Sn) is a tautology. Therefore, we have that

Jg(S1) ∨ . . . ∨ g(Sn)KV

because the above holds for all valuations. Now consider cases,
suppose Jg(Si)KV for each i ∈ 1..n, then

〈M1; v1〉 ∼Λ′
0·Vi·Λi

〈m(Si);ui:τ〉

for some Vi ⊇ V and some Λ′0 ∗ Λi ⊇ Λ0 by the i.h. on E1. By
memory typing soundness (Lemma 5), we have that

Jm(Si)KV ∼ Λ′0 ∗ Λi and thus M1 ∼ Λ′0 ∗ Λi .

Let Λ′ = Λ′0 ∗ Λi, then we have that

∅ `Λ′ v1 : τ and M1 ∼ Λ′

where Λ′ ⊇ Λ.
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Case STYPBLOCK
By assumption, we have that

STYPBLOCK
E1 :: E ` 〈M ; e1〉 → 〈M1; v1〉
E ` 〈M ; {t e1 t}〉 → 〈M1; v1〉

The only type checking or symbolic execution rule that applies
is the symbolic execution rule SETYPBLOCK.

SETYPBLOCK
` Σ : Γ

M :: ` m(S) ok T :: Γ ` e : τ µ′, β /∈ Σ, S

Σ ` 〈S ; {t e t}〉 ⇓ 〈S[m 7→ µ′] ; β:τ〉
Also by assumption, we have that

〈E;M〉 ∼Λ0·V ·Λ 〈Σ;m(S)〉
In particular, we have that

E ∼ 〈Γ; Λ0 ∗ Λ〉
because if ` Σ : Γ and ` Σ : Γ′ then Γ = Γ′. By memory type
soundness (Lemma 5) on M , we have that M ∼ Λ0 ∗ Λ, so

〈E;M〉 ∼ 〈Γ; Λ0 ∗ Λ〉
Then, we have that

∅ `Λ′
0
v1 : τ and M1 ∼ Λ′0

for some Λ′0 ⊇ Λ0 ∗ Λ by the i.h. on E1 with T . Since
µ′, β 6∈ Σ, S, we can assume without loss of generality that
µ′, β 6∈ dom(V ). Now, choose

V ′ = V [β 7→ v1][µ 7→M1]

Then, we have that

Λ′0 `V ′ µ′ : Λ′0 ,

and thus, we have that

〈M1; v1〉 ∼Λ′
0·V ′·∅ 〈µ′;β:τ〉 .

Note that MIX soundness (Theorem 8) as stated above consid-
ers symbolic execution along a path. To show soundness of the
top-level expression, we can consider a exhaustive constraint as
in Corollary 7.1 or simply say that the top-level expression is al-
ways wrapped in a type checking block {t e t}. In order words,
exhaustive symbolic execution of an expression e is type checking
of {t {s e s} t}.
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